Straw bale building performance and design diversity

Larisa Brojan

 $\frac{1}{1} \frac{1}{1} \frac{1}$ University of Ljubljana **Biotechnical** Faculty

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

General performance properties

Straw bale properties:

- rectangular shape, various sizes,
- bale density must be above 85 kg/m³ \bullet (and more then 105 kg/m³ when used for load bearing),
- dry, moisture content less then 15 % (wet weight basis). \bullet

Stacking straw bales in one of the system:

- load bearing structure (a),
- as an infill in a timber frame structure (b),
- prefabricated panels (c).

University of Ljubljana **Biotechnical** Faculty

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Benefits

- **Environmental benefit**
- Insulation properties
- Sustainability

Comparisson of 1m² of straw bale wall and brick wall composits:

Acidification potential

AI - straw bale wall 0,052275 kgSO₂eq

AI - brick wall 0,216688 kgSO₂eq

Primary Energy Content PEI - straw bale wall 104,83 MJ **PEI - brick 985,65 MJ**

Global Warming Potential GWP - straw bale wall -50,037 kgCO₂eq GWP - brick wall 61,548 kgCO₂eq

> University of Ljubljana *Biotechnical* Faculty

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Benefits

- **Environmental benefits**
- **Insulation properties** \bullet
- Sustainability

Straw bale w	vall	Thickness D (m)	Thermal conductivity λ (W/mK)	R = D / λ (m ² K/W)	
Heat transfer interior		/	/	0,130	
Loam plaster	RÖFIX	0,035	0,80	0,044	
Straw bale	Waldland	0,40	0,05	8,0	
Loam plaster	RÖFIX	0,020	0,80	0,025	
Lime plaster	Baumit Sanova Einlagen Trassputz	0,015	0,40	0,038	
Heat transfer exterior		/	/	0,040	
Total		0,470	/	8,277	
U = 1 / 8,277 = 0,12082					

University of Ljubljana

Biotechnical Faculty

Research study – survey; subjective evaluation based on dweller experiances:

"Easy to heat. Consistent heat. Quiet. Warm. **Cozy feel.** The house is very warm in the winter. Great insulation."

Brick wall		Thickness D (m)	Thermal conductivity λ (W/mK)	R = D (m²K/
Heat transfer interior		/	/	0,130
Lime cement plaster	Baumit MPI 25	0,020	1,0	0,020
Honeycomb brick	Wienerberger Porotherm N+F (natureplus)	0,250	0,259	0,965
EPS	Austrotherm F	0,280	0,040	7,0
Lime cement plaster	Baumit MPI 25	0,015	1,0	0,015
Heat transfer exterior		/	/	0,040
Total		0,565		8,170
U = 1 / 8,70 = 0,12240				

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Benefits

- Environmental benefits
- Insulation properties
- **Sustainability** \bullet

Straw bales for a building purpose are easily produced, mostly in the field during the harvest process. With an annaully produced straw could be build:

- 450 000 in UK (Jones, 2009), ullet
- 350 000 in Germany (Minke, 2006) \bullet

houses of area of 150 m².

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Drawbacks

- Fire safety
- Structural stability
- Moisture problems

 $\frac{1}{2} \frac{1}{2} \frac{1}$ University of Ljubljana **Biotechnical** Faculty

Fire safty cerificate F90

Building codes for straw bale building

Protecting straw with layer of plaster and dilatation

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Design approach

- **Size** from 50 m² (10) to 3100 m² (1), \bullet
- construction system timer frame (2, 3, 4, 6, 7, 8, 10), load bearing (9), prefab. panel (1, 5)
- \bullet

(6, 7, 8, 9, 10)

 \bullet

continental (3, 7, 8, 10), alpine (9)

University of Ljubljana *Biotechnical* Faculty

https://www.atelierwernerschmidt.ch/de

exterior layer cement/plastic board (1,4), no layer (2), wooden panels (3, 5, 10), lime/earth plaster

location/climate zone temperate maritime (1, 2, 4, 5), humid continental (6), sub-alpine

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Study case 1

Single family house in Radomlje, Slovenia

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Study case 2 Gateway Building – Nottingham, UK

University of Ljubljana **Biotechnical** Faculty

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Comparison

	house in Radomlje	Gateway Building
floor area (m ²)	120	3100
number of floors	2	4
foundation	concrete pier foundation	concrete slab
structure type	timber frame	timber panel
external layer	clay, lime render	cement board
function	dwelling	classroom, office
design	Blaz Babnik	Make architects
location	Radomlje, Slovenia	Nottingham, UK

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

Conclusions and further research directions

1. Straw bale building has progressed drastically in the past decade in regards to building design, building location (climate zone), and building techniques etc.

2. Straw bales were firstly used by self-build enthusiasts, nowadays can be applied even to more sophisticated architectural projects.

3. Straw bale building design needs to be thought-out well to achieve optimum functionality but at the same time, creativity is almost limitless. It can meet the criteria of modern design and it also illustrates the comprehension of an individual.

4. To introduce the straw bale building potential to the wider audience who is directly involved in building and to the one who is tending to design and build environment-friendly.

5. The current flaws can be addressed more as future research opportunities to improve existing models and systems of straw bale use. There are still open questions demanding new scientific proves and conclusions to support use of straw in the future.

University of Ljubljana *Biotechnical* Faculty

Thank you for your attention!

University of Ljubljana **Biotechnical** Faculty

Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

