Strengthening the confidence in bio-based building materials BIO4ever project approach

Anna Sandak, Jakub Sandak, Marta Petrillo, Paolo Grossi

Today's building sector

- The EU's population is gradually increasing through a combination of natural growth and net migration (currently 508 million)
- To accommodate this population increase, many new buildings will be erected in the near future to provide housing, services, and recreation
- It is desired that the renovation and construction of buildings/infrastructure will be made to high resource efficiency levels already by 2020.
- Whenever possible, further development of novel construction materials should rely predominantly on renewable resources.

Architectural chalenges

Urbanization - density

Climat change

proof of global warming

1720 1900 1950 1970 1980 1990 2006

Urbanization

- For the first time in human history, most of us live in urban settlements: 28 megacities of 10-20 million, 417 medium-sized cities of 1-5 million and 525 smaller settlements of between 0.5-1 million people (data from 2014)
- Our current urban population of around 3.9 billion is expected to grow to around 6.34 billion by 2050, out of a total global population of at least 9.5 billion.
- If the urban population and long-term densification trends continue, the area of the planet covered by urban settlements will increase to more than 3 million sq km by 2050
- Continued urbanisation in its current form will be problematic for global food supplies - the food production is already not keeping up with population growth...

https://www.theguardian.com/cities/2016/

Climate change & pollution

Projected changes in annual mean temperature (left) and annual precipitation (right)

https://www.eea.europa.eu/soer-2015/europe/climate-changeimpacts-and-adaptation If we dont retain rain water during storms cities will flood then and be deprived of water later

Facades and roofs can do it...

If we dont take away urban heat in summer many cities will be unliveable

Facades and roofs can do it...

In cieties the area of building envelopes is much larger than that of public space

If we want to improve the air quality facades and roofs are the best solutions

Challenges for building skin:

- Localizing (functionality, local context)
- Safety (selected materials, sensors, safety codes)
- Flexibility (modular design, adaptability, buildability, design for disasemblage, multifunction)
- Lifespan (indoor climate)
- Comfort (temperatures, day light, responsive, dynamic)
- Communication (sensors, screens, surveliance)
- Economy and sustainability

Building envelopes

- Most complex building component
- Highest level of innovation in last
 25 years
- Sustainability drives technology and innovation

What next?

Why biomaterials?

"The 18th century was about brick, the 19th about steel, the 20th about concrete, and the 21st century is about wood."

Alex de Rijke

The bio-based building materials are surely attractive alternative for modern construction sector...

... however the confidence regarding their proper selection and maintenance should rely on validated service life performance models

BIO4ever project approach

120 facades bio-based materials provided by 31 companies from 17 countries

Natural & artificial weathering in different configurations

Multi-sensor and multi-level characterization

Regression, dose-response and multi-way models

Alternative end-of life transformation solutions

Customer satisfaction/preferences measurements

Software simulating changes of functional and aesthetic performance

Flowchart of the data for 3D visualization of the building exposed to natural weathering

A representation of the UV mapping of a cube

Texture #1 image representing distribution of latewood (dark) and earlywood (light)

Source data

Narural spruce, 1 year of exposure South

Bio4ever samples, 5 months of exposure South Numerical model for determination of the morphological map (texture #1) on the base of material definition (8-bit) and weather dose D (integer number from 0 to infinity)

The same principle will be implemented to model following attributes:

- R colour coordinate: R=f(D, M)
- G colour coordinate: G=f(D, M)
- B colour coordinate: B=f(D, M)
- Surface gloss: P=f(D, M)
- Surface roughness: S=f(D, M)

Curves of the RGB colour changes for early and latewood in one year weathereing

Texture #2 image representing distribution of weather dose D absorbed by the surface

- COMSOL Multiphysics® Version 5.2 Heat transfer module
- Historical data for over 6000 different weather stations
- Temperature on the surface, RH close to the surface, total solar radiation
- By entering the location and the time of day, the software will automatically recompute the orientation of the incident sunlight over the course of the day

3D model (right) reconstructed on the base of 2D diffuse texture map (left)

BIO4ever software

BIO4ever partners

