

Civil Engineering Department

Performance of bio-based insulation panels based on earth, rice husk, gypsum and lime

Ana Antunes¹, <u>Paulina Faria²</u>, Ana Brás³, Vítor Silva¹

¹ Civil Engineering Department, FCT, NOVA University of Lisbon, Portugal

² CERIS and Civil Engineering Department, FCT, NOVA University of Lisbon, Portugal

³ Built Environment and Sustainable Technologies (BEST) Research Institute, Dep. of Built Environment, Liverpool John Moores University, United Kingdom

Contents

- 1. Introduction
- 2. Development of earth-rice husk insulation panels
 - 2.1. Materials and methods
 - 2.2. Specimens
 - **2.3. Experimental campaign and results**
- 3. Conclusions

1. Introduction

- One of the biggest issues in the construction sector is the impact of building materials on inhabitants health
- Indoor air quality is one of the major risk for human health
- The use of bio-based materials can contribute to this problem

Bio-based materials

- Low environmental impact
- Ability to regulate the indoor relative humidity, improving the hygrothermal performance of buildings
- Low costs

- **2.** Development of earth-rice husk insulation panels
 - 2.1. Materials and methods
 - Earth quarry fines from washing aggregate sludge
 - Rice husk
 - Hemi-hydrated gypsum
 - Air lime

- High hygroscopicity
- Relatively low termal conductivity
- Economical
- Environmentally friendly
- Reusable or recyclable

Contribution to regulate the relative humidity of the environment

- **2.** Development of earth-rice husk insulation panels
 - **2.1.** Materials and methods
 - Earth
 - Rice husk ———
 - Hemi-hydrated gypsum
 - Air lime

- Natural fibres from literature:
- Decrease shrinkage
- Increase deformability
- Decrease thermal conductivity

Due to high water absorption, contribute to regulate indoor relative humidity levels

- **2.** Development of earth-rice husk insulation panels
 - 2.1. Materials and methods
 - Earth
 - Rice husk
 - Hemi-hydrated gypsum
 - Air lime

Boiling natural fibres – from literature:

- Decrease thermal conductivity
- Increase adherence
- Increase tensile flexural strength

Rice husk was boiled for 1 hour

- **2.** Development of earth-rice husk insulation panels
 - 2.1. Materials and methods
 - Earth
 - Rice husk
 - Hemi-hydrated gypsum
 - Air lime

From literature:

- Inorganic binder produced at a very low temperature: ~120°C
- Reacts with water, increasing drying speed
- Decrease thermal conductivity
- Increase compressive and tensile flexural strength
- According to the literature an optimized gypsum content can lead to improvements on the performance of earth composites (Lima et al 2016, Binici et al. 2005)

- **2.** Development of earth-rice husk insulation panels
 - 2.1. Materials and methods
 - Earth
 - Rice husk
 - Hemi-hydrate gypsum
 - Air lime —

From literature:

- Inorganic binder produced at a relatively low T: ~900°C
- Reacts by carbonation, capturing CO₂
- Increases resistance to water and reduces biological susceptibility
- Need to find an optimized content of lime to earth composites (Millogo et al. 2008, Gomes et al. 2016, Faria et al. 2013)

2. Development of earth-rice husk insulation panels

2.2. Specimens production

Specimen	Gypsum*	Lime*	Rice husk*		
RH_15D			15%	Dried	
RH_30D	20%	10%	30%	Dried	
RH_30B	-		30%	Boiled	

* percentages by volume of earth

Mixing

- Mixing of the dry ingredients (earth, gypsum, lime) with a shovel
- Mechanical mixing while water is added until a homogeneous consistency is obtained
- Mixing for 90 seconds more
- Addition of rice husk and mixing until a homogeneous consistency was obtained

2. Development of earth-rice husk insulation panels

2.2. Specimens production

Specimen	Gypsum*	Lime*	Rice husk*	
RH_15D			15%	Dried
RH_30D	20%	10%	30%	Dried
RH_30B	-		30%	Boiled

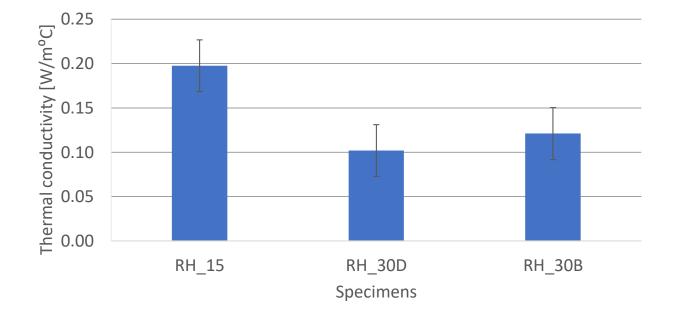
* percentages by volume of earth

Curing

- Casting in 200x200x40 (mm) wooden moulds and 40x40x160 (mm) metallic moulds
- Laboratory conditions: 23°C and 50% RH
- Demoulding after 2 weeks and complete drying for another 2 weeks

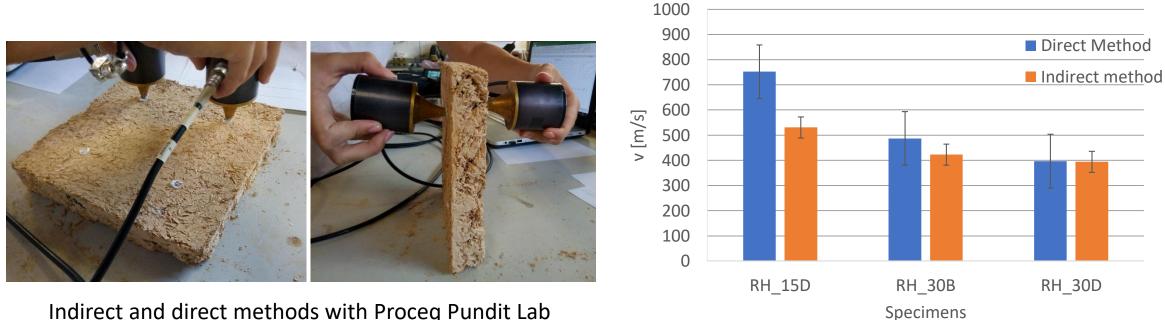
- 2. Development of earth-rice husk insulation panels 2.3. Experimental campaign and results
 - Thermal conductivity
 - Ultra sound propagation speed
 - Abrasion
 - Tensile flexural strength
 - Compressive strength
 - Moisture Buffer Value
 - Fire reaction test

Performance of bio-based insulation panels. Ana Antunes, Paulina Faria, Ana Brás, Vítor Silva

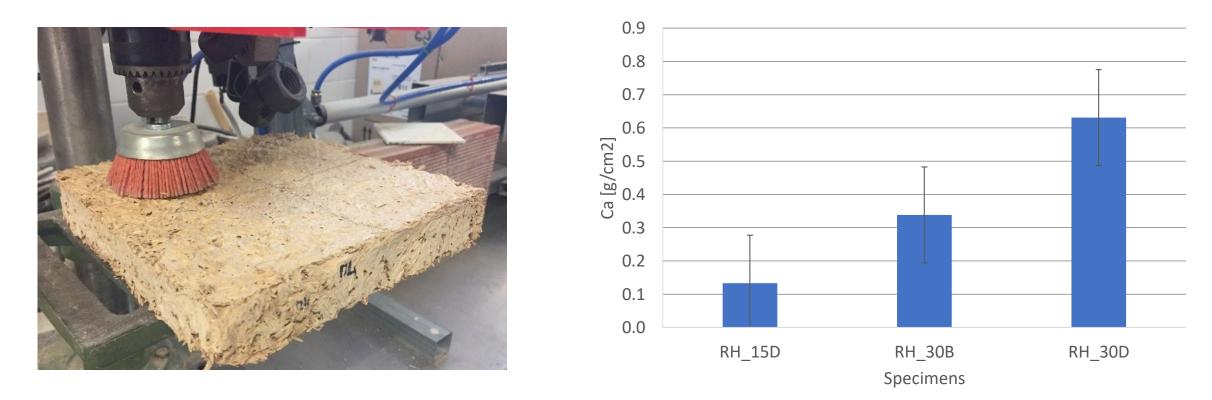


2.3. Experimental campaign and results – Thermal conductivity

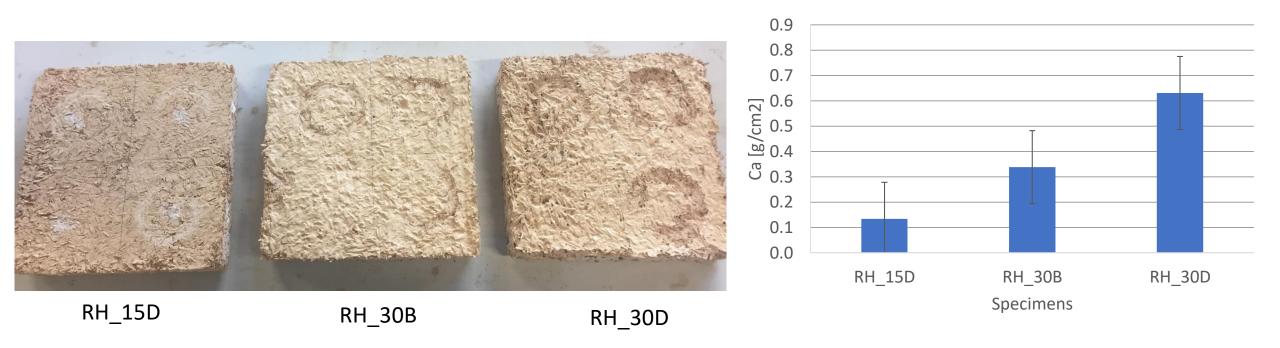
ISOMET 2104 Heat Transfer Analyzer equipment and contact probe



2.3. Experimental campaign and results – Ultra sound propagation velocity (EN 12504-4)


Indirect and direct methods with Proceq Pundit Lab equipment, frequency: 150 Hz

2.3. Experimental campaign and results – Abrasion (DIN 18947 for earth plasters)


Evaluation of weight loss after 20 rotations with a polyethylene brush, with 2 kg making pressure on the surface

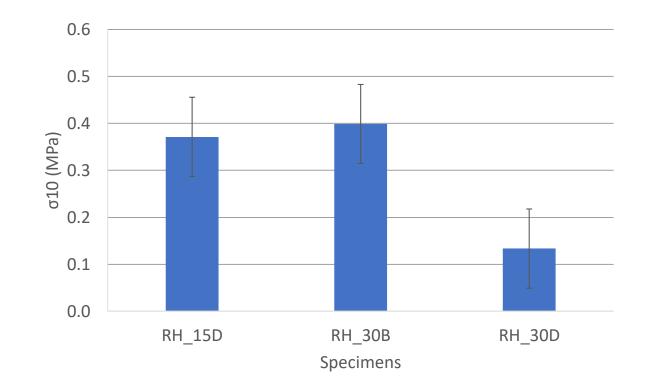
2.3. Experimental campaign and results – Abrasion (DIN 18947 for earth plasters)

2.3. Experimental campaign and results – Tensile flexural strength (EN 12089 for thermal insulating products)

0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 RH_15D RH_30B RH_30D Specimens

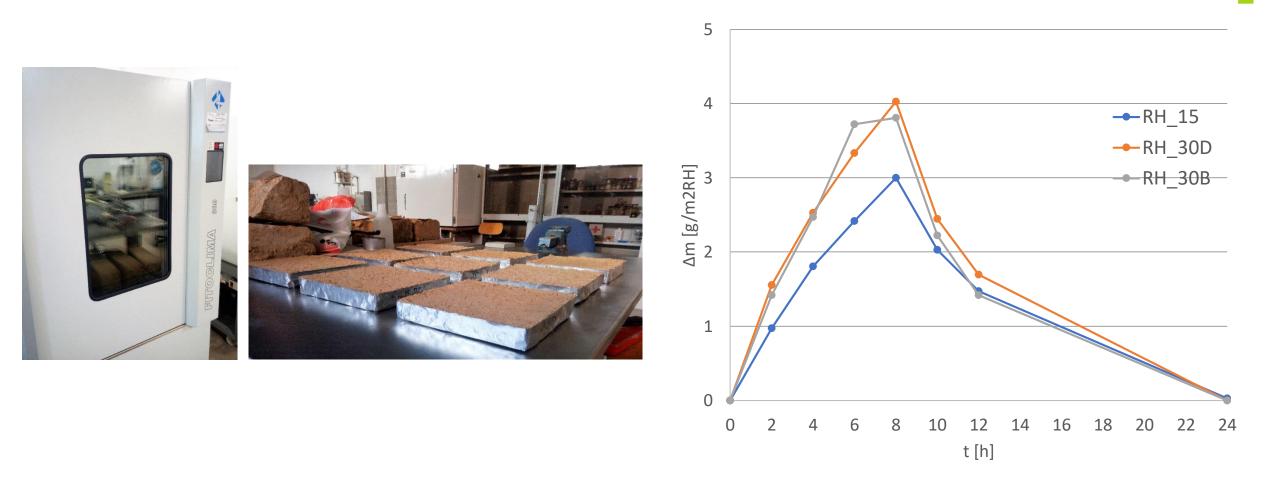
Zwick Rowell Z050 equipment Support distance: 100 mm

Performance of bio-based insulation panels Ana Antunes, Paulina Faria, Ana Brás, Vítor Silva



2.3. Experimental campaign and results – Compressive strength (EN 826 for thermal insulating products)

Zwick Rowell Z050 equipment



Performance of bio-based insulation panels Ana Antunes, Paulina Faria, Ana Brás, Vítor Silva

2.3. Experimental campaign and results – Reaction to fire test (based on EN ISO 11925-2)

- Panels placed on a metallic support at 15 cm from the ground
- Flame applied to the edge of the specimen
- Panels exposed to flame for 30 seconds

2.3. Experimental campaign and results – Reaction to fire test

 RH_{15D}

RH_30B

3. Conclusions

	Bulk density	Porosity	Thermal conductivity	Ultra sound propagation velocity	Effect of abrasion	Compressive strength	Tensile flexural strength	MBV	Effect of fire exposure
Increase of rice husk content	¥	Υ	\checkmark	\checkmark	↑	¥	\checkmark	Υ	↑
Boiling of fibres	1	\checkmark	1	1	¥	4	\checkmark	-	↑

3. Conclusions

- Rice husk reinforced earthen insulation panels vs Conventional insulation materials
 - Synthetic materials: XPS
 - Bulk density: low
 - Fire exposure: highly inflammable → cannot be exposed
 - Acoustic comfort: bad acoustic insulation performance
 - Moisture Buffer Values (MBV): insignificant
 - Natural material: ICB (cork)
 - Bulk density: low
 - Fire exposure: is inflammable but after much more direct contact with flame and is resistant to heat → can be exposed
 - MBV: 0,2-0,3 g/m².RH (Janssen & Roels 2009)

- Earth-rice husk insulation panels
 - Bulk density: higher than the previous
 - Fire exposure: not inflammable except surface fibres → can be exposed
 - Acoustic comfort: better acoustic insulation performance (although not quantified)
 - MBV: 3-2 g/m².RH
 - Good for hygrothermal equilibrium !
 - There is a lot yet to test and optimize, like susceptibility for biological development !

Thank you so much for your attention !