

Creep and moisture interaction on tropical timber structures under outdoor conditions: spatial variability of mechanical parameters

R. Moutou Pitti^{1,2}, N. Manfoumbi³, G. Avellaneda-Malagon⁴, E. Bastidas-Arteaga⁴

¹UCA, CNRS, Institut Pascal, BP 10448, 63000 Clermont-Ferrand, France ²CENAREST, IRT, BP 14070, Libreville, Gabon ³Université des Sciences et Technique de Masuku, URMM, BP 941, Franceville Gabon, ⁴GeM, Université de Nantes, CNRS UMR 6183, France

@ rostand.moutou_pitti@univ-bpclermont.fr

This work is sponsored by French National Research Council through the ANR JCJC Project CLIMBOIS N° ANR-13-JS09-0003-01 and Labelled by ViaMeca

COST ACTION FP1303: Technical Workshop Building with bio-based materials: Best practice and performance specification Zagreb, Croatia, 5-7 September, 2017

Context

Problems

- Various species : Baillonella (Moabi), Acoumea Pierre (Okoumé)....
- Mechanical behavior: drying process, nodes, creep, fracture processes...
- **Difficult to use in building** (Thermo-hydro-visco-mechanical)

➢ Main goals

- Know the impact of the climatic variations and creep on the mechanical behavior of the structure in tropical environment
- Characterizing and modelling the spatial variability of the physicalmechanical parameters under tropical climate

specific goals

- Creep tests on beams in outdoor and sheltered conditions
- Bending/compressive test on specimens coming from these beams
- Characterizing and modelling the randomness and spatial variability of wood properties : density and mechanical properties

- 1. Context & goals
- 2. Materials & Methods
- 3. Results
- **Conclusion & Outlook**

2. Materials & Methods Materials Methods

> Materials:

Concrete loading (10 kN)

Moabi specie

or Baillonella

Toxisperma

Beam in sheltered outside climate

2. Materials & Methods

Materials

Methods

Configuring test specimens for creep tests:

Experimental devices

Configuring test specimens for instantaneous tests:

Modelling of experimental device for bending test

Materials

Methods

Experimental devices

Modelling of spatial distribution of specimens (different trajectories) Dimensions of specimens for bending and compressive tests

- Reliability approaches
- Uncertainties and spatial variability → material properties, environment, loads, etc.
- Karhunen-Loève expansion

$$X(x,\theta) = \mu_X + \sigma_X \sum_{i=1}^n \sqrt{\lambda_i} \,\xi_i f_i(x)$$

where : n : number of terms of the expansion

 ξ_i : Gaussian random variables

 λ_i , f_i : eigenvalues and Eigen-functions of the autocorrelation function $\rho(\Delta x)$

• The exponential correlation function → represent the autocorrelation shape of the material properties (Sudret and Kiureghian 2000; Rakotovao *et al.* 2017)

$$\rho(\Delta x) = \exp(\frac{-|\Delta x|}{b})$$

where b is the correlation length

Plan	1. Context & goals	2. Materials & Methods	3.Results	Conclusion & outlook

- 1. Context & goals
- 2. Materials & Methods
- 3. Results
- **Conclusion & Outlook**

Experimental measurements for Bending strength

Mean and Standard deviation of Bending Strength after filtering (N/mm²)

Traj	B1 μ	B1 σ	B2 μ	B2 σ
1	95.8638	13.4957	106.5550	4.5941
2	94.9714	11.0100	105.4900	8.3643
3	102.0833	17.6942	115.8000	6.3129
4	91.7983	9.8496	116.7320	6.4451
5	101.8700	12.2734	119.1825	7.3306
6	97.0375	15.7560	116.9320	6.8407

3.Results

Autocorrelation of Bending Strength trajectories

$$\rho(\Delta x) = \exp(\frac{-|\Delta x|}{b})$$

Autocorrelation lengths of Bending Strength (in m)

Traj	b for BS1	b for BS2
1	0.1025	0.0499
2	0.1020	0.0572
3	0.1382	0.0678
4	0.0536	0.0656
5	0.0691	0.0623
6	0.0324	0.0671

Summary of data identified for modelling the random field (*b* in m and μ , σ in N/mm²)

BEAM	b	μ_X	σ_X
BS1	0.09308	97.2707	4.0394
BS2	0.0616	113.4486	5.8683

$$X(x,\theta) = \mu_X + \sigma_X \sum_{i=1}^n \sqrt{\lambda_i} \,\xi_i f_i(x)$$

Absolute error of the process covariance with respect to experimental data

With a higher order of expansion we obtain better approximations, minimizing error.

Random field realizations

Realizations of the random field of bending strength generated from the Karhunen Loeve expansion

□ The first results show

- ✓ Tests on beam in sheltered tropical atmosphere (Moabi)
- ✓ Tests specimen debited of these beams according Eurocode requirements
- \checkmark Tests in compressive in order to know the of young modulus and density
- \checkmark Tests in bending in order to know the of young modulus and density
- ✓ The bending moment could be represented by a stationary random field and modelled by using the Karhunen-Loève expansion

Coming works

- ✓ Perform the same tests on tensile conditions
- \checkmark Perform the same tests on beam in outside and inside conditions
- Consider uncertainty and spatial variability processes in a reliability analysis

Creep and moisture interaction on tropical timber structures under outdoor conditions: spatial variability of mechanical parameters

R. Moutou Pitti^{1,2}, N. Manfoumbi³, G. Avellaneda-Malagon⁴, E. Bastidas-Arteaga⁴

¹UCA, CNRS, Institut Pascal, BP 10448, 63000 Clermont-Ferrand, France ²CENAREST, IRT, BP 14070, Libreville, Gabon ³Université des Sciences et Technique de Masuku, URMM, BP 941, Franceville Gabon, ⁴GeM, Université de Nantes, CNRS UMR 6183, France

@ rostand.moutou_pitti@univ-bpclermont.fr

This work is sponsored by French National Research Council through the ANR JCJC Project CLIMBOIS N° ANR-13-JS09-0003-01 and Labelled by ViaMeca

COST ACTION FP1303: Technical Workshop Building with bio-based materials: Best practice and performance specification Zagreb, Croatia, 5-7 September, 2017

