Visco-elastic properties of archaeological oak wood treated with methyltrimethoxysilane

MAGDALENA BRODA*, KATRIN ZIMMER**, ANDREAS TREU**

*INSTITUTE OF WOOD CHEMICAL TECHNOLOGY, FACULTY OF WOOD TECHNOLOGY, POZNAŃ UNIVERSITY OF LIFE SCIENCES, POZNAŃ, POLAND **NORWEGIAN INSTITUTE OF BIOECONOMY RESEARCH, DIVISION FOR FOREST AND FOREST RESOURCES, WOOD TECHNOLOGY SECTION, ÅS, NORWAY

STSM Grant from COST Action FP1303 [COST STSM reference number COST-STSM-FP1303-33818]: **"Using DMA device to characterise physicomechanical properties of archaeological oak wood treated with silanes**"

Host: Erik Larnøy, Norwegian Institute of Bioeconomy Research (NIBIO)

<u>Aim</u>:

• visco-elastic properties of archaeological waterlogged oak wood consolidated with methyltrimethoxysilane (MTMOS).

Material:

• archaeological waterlogged oak pile from the Lednica Lake in the Wielkopolska Region, Poland – one of the structural element of the early medieval bridge.

<u>Method</u>:

- Dynamic Mechanic Analyser 242 model DMA 242 E by NETZSCH-Gerätebau GmbH,
- specimens tested in radial direction using compression mode.

Results:

Table 1. Density and DMA parameters of air-dried samples at 60 minute of measurement; S – waterlogged sapwood, H1-H3 – respective waterlogged heartwood layers, CO – contemporary wood, t – MTMOS-treated samples

Wood sample	DMA parameters at 60' of measurement						a []rayan:3]
	E' [MPa]	E'' [MPa]	tan δ *10 ⁻³	Δl [μm]	As' [µm]	F stat. s [N]	$p_t [kg \times m^2]$
S	146.33±52.17	18.33±9.29	0.12±0.02	-16.50±3.56	6.97 ± 2.62	9.55 ± 0.05	483.54
H1	134.57±38.01	20.57±8.46	0.15±0.02	-7.99 ± 3.08	$4.44{\pm}1.05$	9.59±0.02	720.52
H2	163.00 ± 65.08	29.29±18.96	0.17 ± 0.04	-6.59 ± 2.48	$3.99{\pm}1.83$	9.60±0.03	760.45
Н3	165.57±68.93	32.57±21.74	0.18±0.06	-7.26±3.30	3.96 ± 2.20	9.60±0.04	792.39
tS	43.75±18.30	3.75 ± 2.22	0.08 ± 0.02	-8.38±2.82	9.87±0.19	7.73±2.03	203.16
tH1	142.50±32.02	23.25±10.40	0.16±0.03	-3.08±1.19	3.78±0.99	9.60±0.02	687.44
tH2	140.25 ± 74.08	28.00 ± 23.62	0.17 ± 0.08	-3.10±1.98	4.92±3.52	9.56±0.10	778.76
tH3	178.00 ± 35.00	36.00±13.14	0.20 ± 0.04	-3.30±1.20	3.12±0.90	9.61±0.01	840.29
CO	138.50±20.27	21.00 ± 5.72	0.15±0.02	-6.900±1.61	4.24 ± 0.81	9.59 ± 0.02	624.17

Air-dried wood samples: A – untreated sapwood, B-D – untreated heartwood (H1-H3), E – MTMOS-treated sapwood, F-H – MTMOS-treated heartwood (H1-H3). • Untreated wood – densified during drying (shrinkage, collapse), stiffness similar or even higher than of CO.

• MTMOS-treated wood – well preserved shape and dimensions, clear correlation between the level of wood degradation (translated into wood density) and mechanical strength.

CONCLUSION: MTMOS treatment did not deteriorate mechanical properties of waterlogged wood, no plasticising effect was observed, and the visco-elastic properties of silane-treated wood were statistically similar to those of contemporary wood.

MTMOS as a waterlogged wood consolidant:

Cross-section of waterlogged archaeological oak wood divided into four zones: S – sapwood, H1 – outer heartwood, H2 – middle heartwood, H3 – inner heartwood.

DIMENSIONAL STABILITY

• improved

HYDROPHOBICITY

• increased

VISCO-ELASTIC PROPERTIES

not affected

THANK YOU FOR YOUR ATTENTION

THE RESEARCH WAS SUPPORTED BY **STSM GRANT FROM COST ACTION FP1303** [COST STSM REFERENCE NUMBER: COST-STSM-FP1303-33818] AND BY THE POLISH MINISTRY OF SCIENCE AND HIGHER EDUCATION AS A PART OF THE "CULTURAL HERITAGE – RESEARCH INTO INNOVATIVE SOLUTIONS AND METHODS FOR HISTORIC WOOD CONSERVATION" PROJECT (NO. 2BH 15 0037 83)

THANK YOU FOR SUPPORTING ANOTHER RESEARCH: **STSM GRANT FROM COST ACTION FP1303** [COST STSM REFERENCE NUMBER: COST-STSM-FP1303-37557] "THE REACTIVITY OF ORGANOSILICON COMPOUNDS WITH WOOD - FT-IR STUDY" HOST: MARIA-CRISTINA POPESCU, "PETRU PONI" INSTITUTE OF MACROMOLECULAR CHEMISTRY OF THE ROMANIAN ACADEMY, IASI, ROMANIA