The interactions between lignocellulosics and water at a micro-level

Professor Callum Hill JCH Industrial Ecology Ltd enquiries@jchindustrial.co.uk

The ISOBIO project

Title: Development and Demonstration of Highly Insulating, Construction Materials from Bio-derived Aggregates

- Duration: 4 years (February 2015 January 2019)
- Coordinated by TWI Ltd (Cambridge, UK)
- Budget of budget of 6,3M€
- Funded by the Horizon 2020 programme under a specific call to improve energy performance and reduced embodied energy across the whole life cycle of a building (EeB-01 -Materials for building envelope).

- To develop and bring new bio-based insulation panels and renders into mainstream in order to improve the energy efficiency of buildings;
- To assess and advance the state-of-the-art in natural insulation materials, and hygrothermally (heat and moisture) efficient buffering materials, binders, sol-gels and resins;
- To deliver products with at least:
 - 50% reduction in embodied energy and CO₂ emissions at component level;
 - **20% better insulation** properties than conventional materials;
 - 15%, lower construction costs; and
 - 5% reduction in the total energy spent over the lifetime of a building.

Multidisciplinary consortium of 11 partners from 6 different European countries.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°636835.

HYSTERESIS

Relative humidity (%)

WHY DO WE GET HYSTERESIS?

• Questions:

- What is the origin of sorption hysteresis?
- Can the mechanism for hysteresis be linked to the sorption kinetic behaviour?

HYSTERESIS

- Model by Vrentas and Vrentas
- Sorption onto a glassy solid below the glass transition temperature
- Hysteresis arises due to adsorption and desorption into/out of a material in different states

Hyesteresis

HYSTERESIS

The Water Vapor Sorption Behavior of a Galactomannan Cellulose Nanocomposite Film Analyzed Using Parallel Exponential Kinetics and the Kelvin-Voigt Viscoelastic Model

Barbara A. Keating,¹ Callum A. S. Hill,² Dongyang Sun,² Rob English,² Phil Davies,³ Charles McCue³ ¹Department of Mechanical and Aerospace Engineering, The University of Strathclyde, Glasgow G1 1XJ, United Kingdom ²Forest Products Research Institute, Joint Research Institute for Civil and Environmental Engineering, Edinburgh Napier University, Edinburgh EH10 5DT, United Kingdom ³Waters, Atlas Park, Simonsway, Manchester M22 5PP, United Kingdom

Correspondence to: B. Keating (E-mail: barbara.keating@strath.ac.uk)

JCH

DVS APPARATUS

No.

DVS RUN

SORPTION KINETICS

SORPTION KINETICS - PEK MODEL

• $MC = MC_0 + MC_1(1 - e^{-t/t_1}) + MC_2(1 - e^{-t/t_2})$

PEK MODEL

KINETICS

Cooperative Relaxation Processes in Polymers

J. Appl. Polym. Sci., 64, 77, (1997)

SHIRO MATSUOKA,1 ARTURO HALE2

- Mechanical interpretation using Kelvin-Voigt viscoelastic model
- Rate limiting step of sorption process is polymer relaxation

KELVIN-VOIGT MODEL

$\varepsilon = (\sigma_0 / E) [1 - \exp(-t/\varphi)]$

The water vapour adsorption—desorption behaviour of naturally aged *Tilia cordata* Mill. wood

Carmen-Mihaela Popescu^{a,*}, Callum A.S. Hill^b

^a "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania

^b Forest Products Research Institute, Edinburgh Research Partnership Joint Research Institute in Civil and Environmental Engineering, Edinburgh Napier University, Edinburgh EH10 5DT, UK

Polymer Degradation and Stability 98 (2013) 1804–1813

Langmuir 1998, 14, 3858-3864

Diffusion Barriers in the Kinetics of Water Vapor Adsorption/Desorption on Activated Carbons

A. W. Harding, N. J. Foley, P. R. Norman,[†] D. C. Francis,[†] and K. M. Thomas*

3.2. Adsorption Kinetics. The kinetics of water vapor adsorption on carbon C1 have been shown to follow a linear driving force mass transfer (LDF) model.⁹

 $M_{\rm t}/M_{\rm e} = 1 - {\rm e}^{-kt}$

CONCLUSIONS

- A 'mechanical' interpretation gives results that are reasonable
- Fast process is probably diffusion-limited and slow process relaxation-limited
- Still to be investigated is the link between sorption hysteresis and kinetics
- Sorption is controlled by energy criteria
- So what is the role of OH groups?

