Tall wood buildings – Danish perspective

COST Training School – Friday 17 March 2017 Anders Kjellow – Project Manager – Danish Technological Institute

Taller and taller....

TEKNOLOGISK

 2008:
 9 storeys

 2013:
 10 storeys

 2015:
 14 storeys

 2016:
 18 storeys

 2018:
 24 storeys

 2023:
 34 storeys

 ????:
 80 storey

Brocksrcayn **Finding** Stadiologium

A growing business:

Almanac Market Data

Engineered wood market to reach \$41.3 billion globally by 2022

By Robert Dalheim February 09, 2017 | 1:18 pm EST

PORTLAND - A new report from market research firm Allied Market Research (AMR) projects that the global engineered wood market is estimated to reach \$41.273 billion by 2022, growing at a compound annual growth rate (CAGR) of 24.8 percent from 2016 - 2022. North America and Europe, being the developed markets, account for nearly 70 percent of global engineered wood production, while still maintaining high CAGRs.

Technological development:

Cross-Laminated Timber (CLT) as supporting structure in tall buildings

CLT – plywood on steroids...

Wood

Why tall wood buildings?

Population growth in cities...

Figure I.1. The world's urban and rural populations, 1950-2050 7 000 Urban 6 0 0 0 5 000 Population (millions) 4 000 Rural 3 000 2 0 0 0 1 000

United Nations, Department of Economic and Social Affairs, Population Division (2015). World Urbanization Prospects: The 2014 Revision, (ST/ESA/SER.A/366).

...also in Denmark...

Copenhagen

- 100.000 new inhabitants over next 10 years
- 45.000 new homes needed

Aarhus

 50.000 new inhabitants over next 10 years 20-25.000 new homes needed

..large environmental effect

Globally, buidlings acount for:

- 40% of total energy consumption
- 40% of total ressource consumption
- 30% of total emission of greenhouse gasses

Gigantic CO₂-bill if demand is covered by concrete and steel

Emission from production of 1000 kg:

- Steel: 1900 kg CO₂
- Concrete: 87 kg CO₂

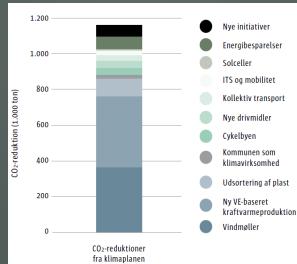
Buildings for CO₂ storage

Emission from production of 1000 kg:

- Steel: 1900 kg CO₂
- Concrete: 87 kg CO₂

Wood stores CO₂ as it grows

• Wood: -1700 kg CO₂ (pr. 1000 kg wood)


No focus on energy consumption in construction phase

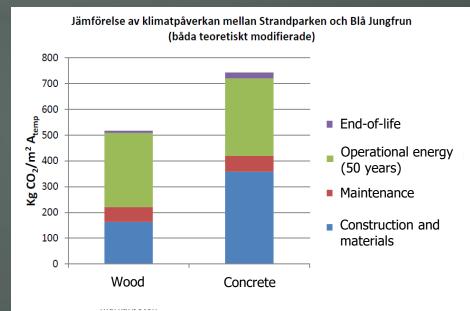
Intense focus for 50 years on lowering CO_2 emissions from buildings use phase

E.g. Climate strategy for Copenhagen Municipality

 CO_2 -neutral in 2025.

No focus on building materials.

Kelentaan CO2-neutral Tatas


EN GRØN, SMART

Significance of choice of materials - For the life cycle of a building

TEKNOLOGISK INSTITUT

Swedish LCA:

- Construction and materials has same environmental impact as 50 years of use for a modern low-energy building
- Significant reduction of CO₂ emissions by choosing wood as building material
- <u>Time to focus on CO₂ emissions from</u> construction phase

Data fra:

Byggandets Klimatpåverkan, Livscykelberäkning av klimatpåverkan för et nyproducerat energieffektivt flerbostadshus med massiv stomme av trä, Sveriges Byggindustrier, 2016

Network for tall wood buildnings in Denmark

Goal: Wood should be a natural choice of material for tall buildings for the Danish building industry

Internet Borget B

InnoB

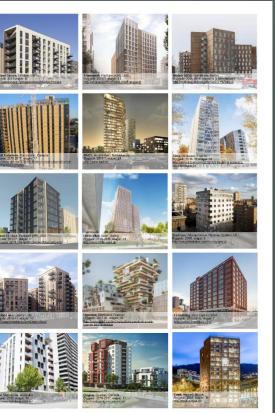
TEKNOLOGISK

Challenges for tall wood buildings

Law

Little experience

Tradition



Insurance

Economy(?)

2

TEKNOLOGISK

Possibilities for tall wood buildings

TEKNOLOGISK

Ligther buildings – more storeys, less impact on underground

Environmental benefits and CO₂ reductions

Easier construction

Enhanced indoor climate

Enhanced precision

Possibilities for tall wood buildings

Reduced number of deliverances

Reduced dust

Faster construction

Economy(?)

Architectural possibilities

Long deliverance time for concrete elements

In conclusion...

- Wood is the future!
- Population growth \rightarrow large demand for new buildings
- Large CO₂ emissions from production of traditional building materials
- Building with wood causes large reductions in CO₂ emissions
- Focus on energy consumption in construction phase needed

Thank you!

Anders Kjellow – awk@dti.dk