BC

Cost Action Training school

Standard methods of assessment of mould growth

Measuring mould

- Seen how to sample for moulds
 - Materials
 - Environment
- And how to grow them to help identify them – Culturing

How to use the information

- For developing materials
 - Mould proof!
 - coatings
- For developing methods of stopping growth — Biocides

From what we know

- We can make sure the environment is not mould friendly
- Target their physiology
- Eventually need to know
 - Does it work!
- Need to model or test the material

There are a number of tests available falling into two main categories

- Physical testing
 - Expose material to fungi
- Modelling
 - Determine likelihood of attack based on material properties

Modelling

- Coincides with moisture
 Simulate growth properties
- Improve resistance
 - properties

- Develop potential
 - trends
- Predict susceptibility

Specific models will not fit all materials

Model purpose

- Material / property specific
- Product purpose food industry
- Mould species specific

10

Critical variables

- Water activity / moisture content
- Temperature
- Relative humidity
- Mould and material interaction

with mould species

If models aren't the complete answer

- Physical testing
 The ultimate challenge!
- There are a number of standardised methods.

Standard testing of materials and products

- Two ways of looking at the issue
- Does the material allow mould to grow
- Does the material kill moulds
 - Applicable to biocides etc

Standards

- BS 1982 -3 (1990) Fungal resistance of panel products made of or containing materials of organic origin. Methods for determination of resistance to mould or mildew
- EN 927-3 (2006) Paints and varnishes. Coating materials and coating systems for exterior wood. Natural weathering test
- EN 152 (2011) Wood preservatives. Determination of the protective effectiveness of a preservative treatment against blue stain in wood in service. Laboratory method
- EN 15457 (2007) Paints and varnishes. Laboratory method for testing the efficacy of film preservatives in a coating against fungi
- BS EN ISO 846: 1997 Plastics Evaluation of the action of micro-organisms
- ASTM D 4445-91 : 1991, Standard Method for Testing Fungicides for Controlling Sapstain and Mould on Unseasoned Lumber (Laboratory Method)

Outdoor or lab based methods?

Outdoor

- Effect of weathering
 - Rain, UV temperature changes
- Durability
- Is the material naturally resistant to mould?

Laboratory

- Only tests a few species
- Artificial
- Fast

Usually uses a spores suspension as the inoculum

Assessment

- Usually visual but can in some circumstances use mass loss
- In terms of material properties
 - looking at ability and intensity of growth
- In terms of biocides
 - Threshold concentrations

Visual ratings (ISO 846)

Intensity of growth	Evaluation	
0	No growth apparent under a microscope	
1	No visible growth to the naked eye but visible under a microscope	-
2	Visible growth, up to 25% coverage	
3	Visible growth up to 50% coverage	
4	Visible growth up to 75% coverage	
5	Heavy growth, covering more than 75% of sample surface	

What do the values mean?

Can the visual assessment be improved

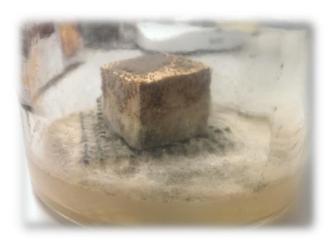
- Training via COST action!
- Photographic/image analysis methods

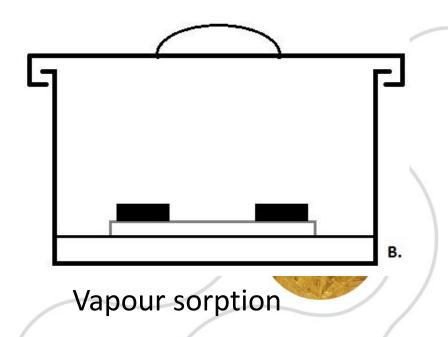
Testing disadvantages?

- Can be substrate specific
 - Wood
 - Coating
 - Plastics
- May not suit all construction materials
 - Insulation
 - Modular construction

Non standard methods?

- There are a number of methods in use or development that are not "Standardised"
- These may be of use in non conventional investigations

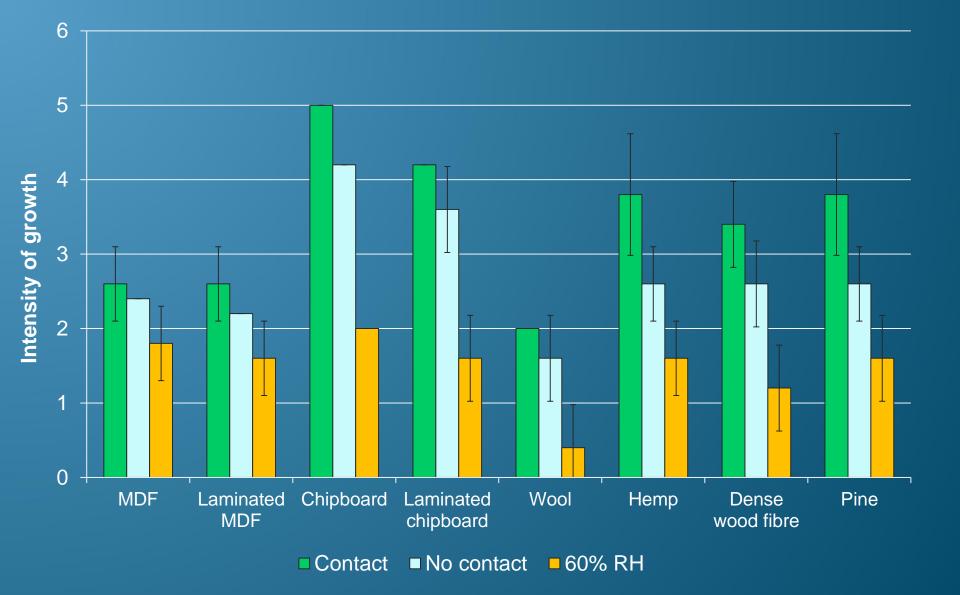



Modified test method

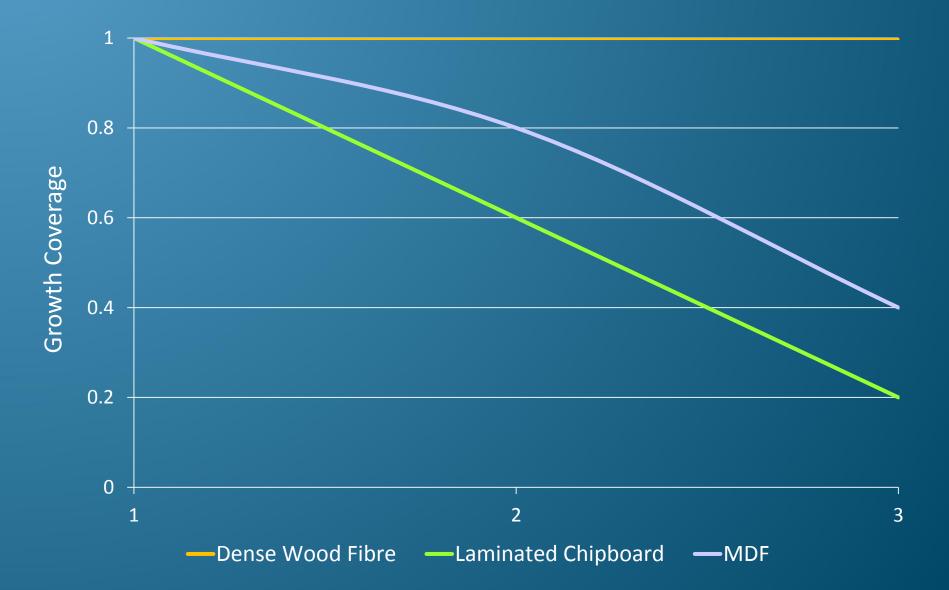
(as per B.Stefanowski et al 2015)

- 600ml volume vessels
- Aluminium lids with cotton plug
- Mineral salt agar
- Sterile conditions

Contact



Assessment


- Visual assessment based on BS-EN 846
 - Scale of 0 to 5
 - 0 is no growth
 - 5 is 100% coverage
- Primary, secondary and tertiary colonisers were

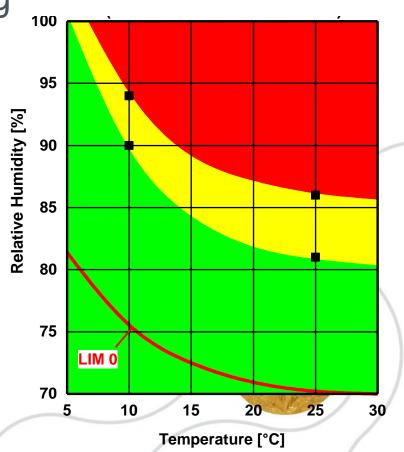
identified and recorded

Suggests that through vapour sorption alone, materials MC was high enough to support growth

Primary, secondary and tertiary colonisers

What does the work show?

- Growth
- Variation in growth dependant on material
- Different moisture environments highlighted difference in growth
- Succession of growth
- Tests the whole product



Other methods available...

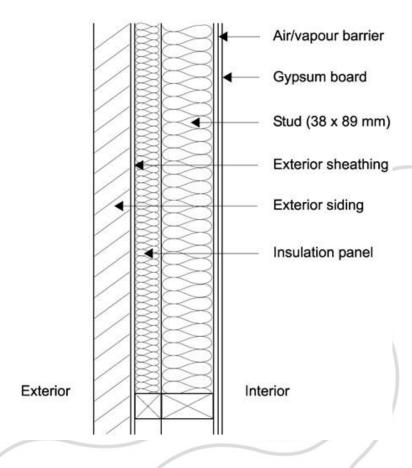
Fraunhofer Isopleth testing

– Takes 100 days

Any other issues with material testing?

- The methods test A material
- Doesn't take into account material interactions
 - Modular construction
 - Bio-based building materials

Use of bio-based building materials


- The use of alternative bio-based materials in building is on the increase.
- For example insulating material
 - Up to 20% bio-based in Germany
 - 10% in France
 - 1% in UK

Bio-based construction materials

- Bio- based materials often used as components in multilayer products
 - Sheathing e.g. wood/brick/blockwork
 - Structural elements
 - Vapour barrier
 - Cavity insulation
 - Ideally breathable but water resistant

Good design

A good design will use;

- Well tested / modelled components.
- Breathable and vapour permeable materials that prevent build up of water vapour in the cavity or on susceptible materials.
- Biocidal products to prevent attack.

In case of failure in service...?

- How will the materials act if there is a failure that lets water/vapour in?
 - Could be beneficial acting as a buffer before slowly allowing material to dry
 - Could be detrimental providing a moisture reserve and growth path for microbial organisms.

How will the materials interact?

- Service life inspection?
- Modelling?
 - Based on previous data of known materials
 - Novel materials and /or construction methods?
- Testing?

Need for new test methods?

- Improve and adapt existing methods
- Design a method to test effects of material interactions on material susceptibility to fungi
- Develop a lab exposure test that could test modular components?

