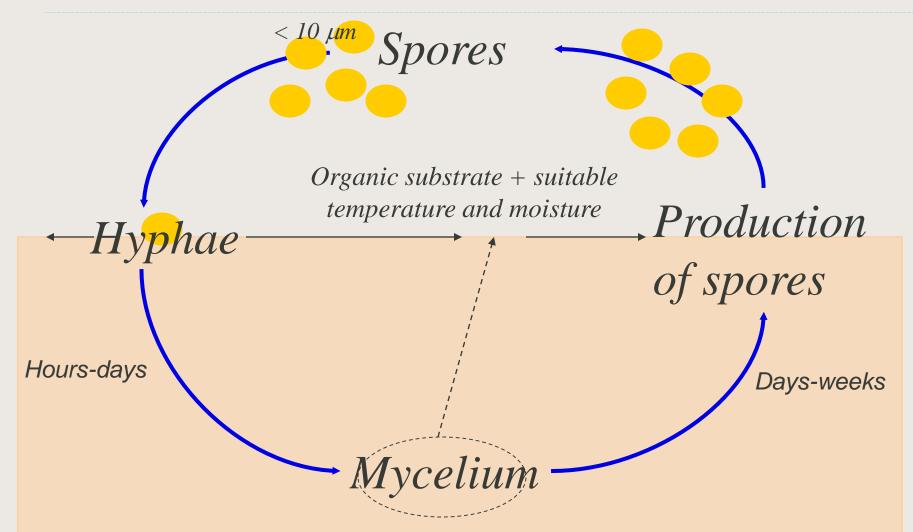


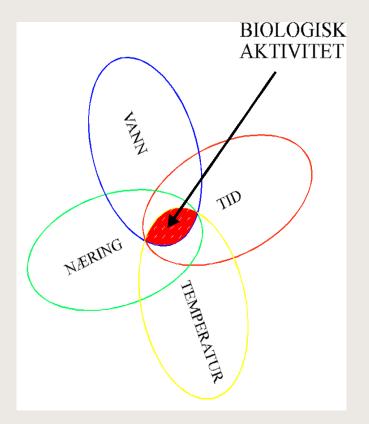
www.mycoteam.no

MODERN SAMPLING AND ANALYSIS TECHNIQUES

Ingeborg Bjorvand Engh, PhD senior advisor Mycoteam AS

> Konsulenter innen sopp- og insektspørsmål. Biologiske bygningsskader.





Life cycle moulds

Biological activity

Established sampling techniques

- Bulk material sampling
- Dust sampling
- Surface samples
- Air sampling
- Sampling fungal and microbial by-products

How to sample when there is nothing to see?

- No visible damage.
- No structural problems
- No aestetical issues
- Not detectable moisture
- No history of leakage, no old mould damages
- Noone can remember anything

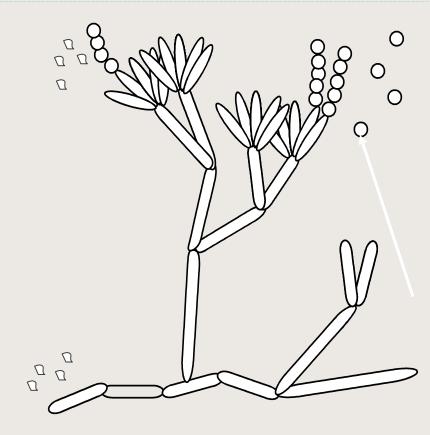
18.06.2015

Still – some have problems like asthma or allergy.

Limitations to traditional methods

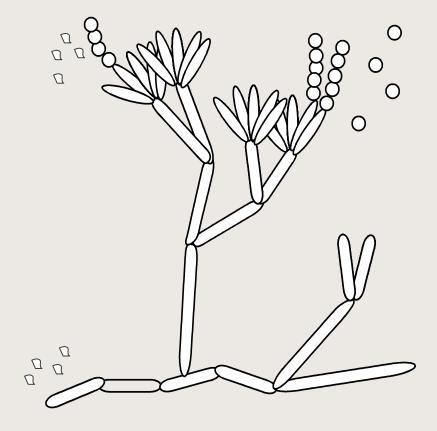
- Not all fungal genera or species are recognisable
- Small fragments and single spores are hard to detect
- Not all spores become airborne

- Streptomyces, Mucor and Rhizopus hard to find, but detected in most of the qPCR tests.
- Fungal genera and groups identified through direct microscopy were all detected using qPCR

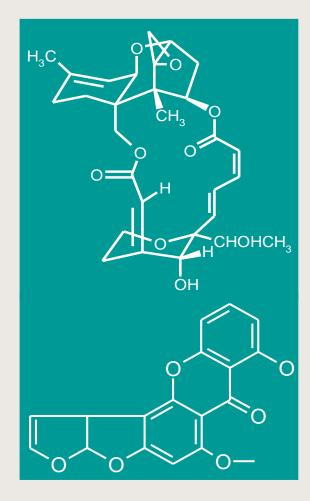

Ask yourself...

- What is the problem?
- Where to take samples?
- How to sample?
- Interpretation of results:
 - To what extent or level
 - What should you tell?
 - Repairments necessary, remediation of damages
- Art of communicating
 - Communicating the risk
 - Telling the truth, but explain the facts too
 - «There are spiders»…

Bioactive substances and metabolites from moulds


- Spores
- Fragments of spores and hyphae
- Glucans
- Proteins
- Secondary metabolites including mycotoxins
- -Microbial volatile organic compounds

Mycotoxins


A mycotoxin is a metabolite that causes a toxic response when introduced by a natural route in low concentrations to higher vertebrates and animals

Microbial volatile compunds (MVOC)

- Microbial volatile compunds (MVOC)
- Microbial VOCs (mVOCs) are presently used as marker to detect human diseases, food spoilage or moulds in houses.
- no public and up-to-date collection on mVOCs is available
- Mycotoxins are not necessarily volatiles.

Mycometer test

- Rapid detection of fungi
- Analysis of fungi from air samples, surfaces etc.
- Verified by the US-EPA (Environmental Protection Agency)
- In use in Europe and US

Applications Mycometer test

- Post remediation verification (PRV)
- Documenting the efficacy of the cleaning of surfaces for mould growth
- Documentation of mould growth
- Documentation that discoloration is NOT mould growth
- Delineation of mould growth where it is non-visible. How much should be cleaned?
- Documenting the cleaning of HVAC systems

Air sampling methods

Culturable, viable airborne moulds

- MicroBio Air Sampler
- Culture the fungi 1 week
- Results: Fungi identified to genus/species level
- Might reveal unknown or hidden damages
- Culturable viable spores ONLY
- Information from short time period

Impingement, impaction, filtration

• Liquid medium used for particle collection.

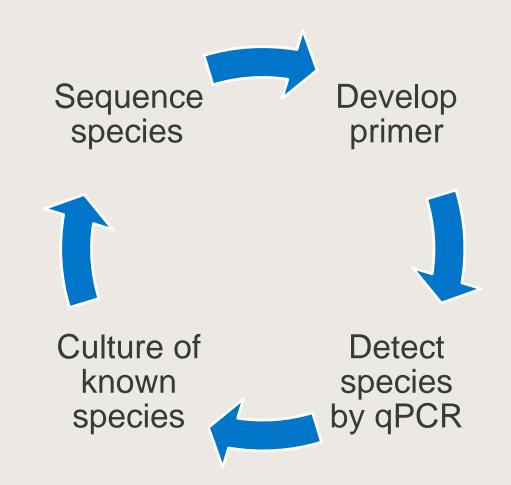
- Sampling possible directly on to Petri dishes.
- Sampling through a filter, a range of pore sizes available.

Hyphal fragments

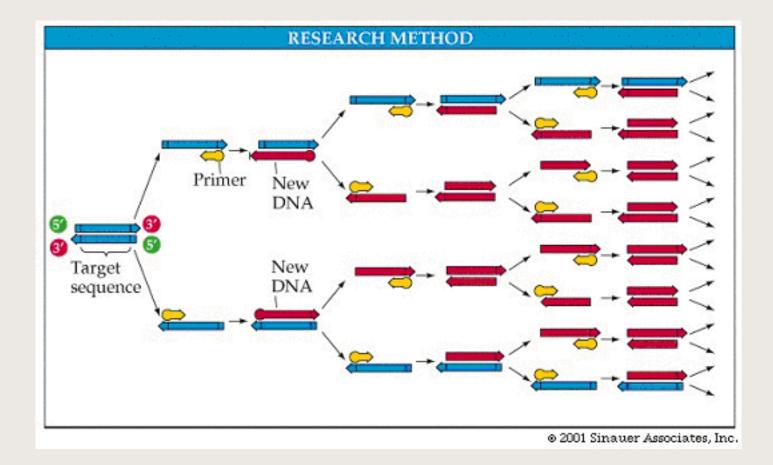
- Aerosolized fungal fragments are particles derived from any intracellular or extracellular fungal structure.
- Size: submicron particles or larger fungal fragments
- In vitro studies have shown that submicron particles of several fungal species are aerosolized in much higher concentrations (300–500 times) than spores.
- The combination of hyphal fragments and spore counts improved the association with asthma severity.
- Higher respiratory deposition than spores.
- Detection by immunodetection techniques

DNA based techniques

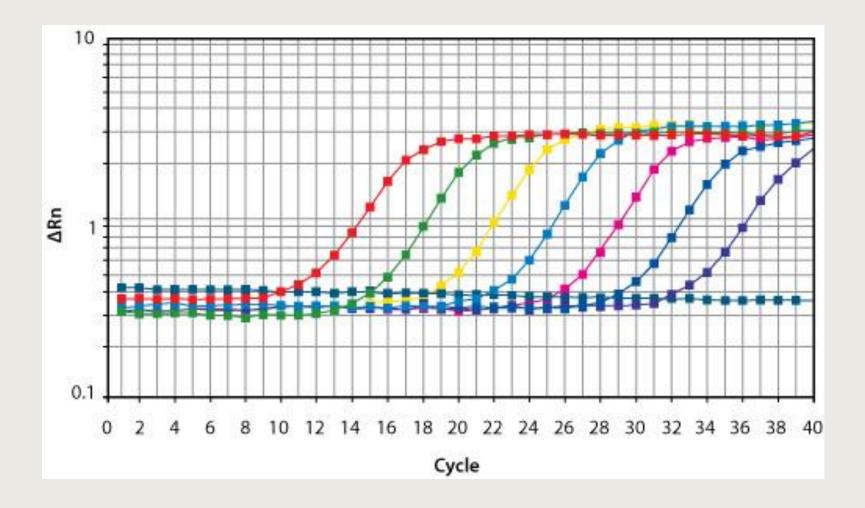
- Where can we find DNA?
 - Cells: Spores, hyphae
 - Extracellular DNA
- How much do we need?
- How can we use DNA to identify a species?
- When to use DNA for identification?


18.06.2015

© 1999 Addison Wesley Longman, Inc.



Identification starts with identification...



PCR reaction principle

Quantification of strain in test tube

DNA tests available

- qPCR several vendors all over Europe and especially US labs
- ERMI test (EPA Technology for Mold Identification and Enumeration)
 - A DNA-based analysis called Mold Specific Quantitive PCR (MSQPCR) of 36 molds including, the 26 Group 1 species associated with homes with water damage and the 10 Group 2 species which are found in homes independent of water damage, forms the basis of the ERMI.
- Several vendours in Europe

Fungal genera and species - primers

Primers and Probes for Target Species

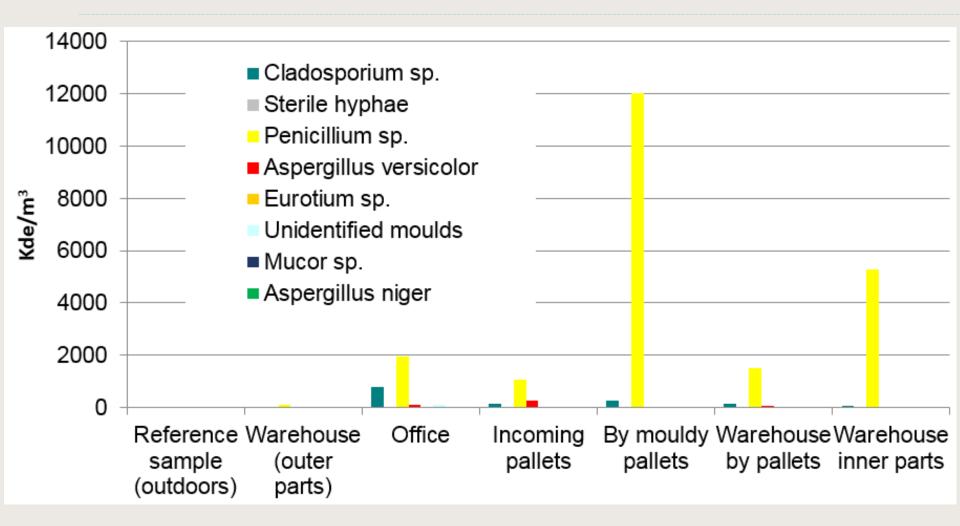
18.06.2015

 Absidia | Acremonium | Alternaria | Aspergillus | Aureobasidium | Candida | Chaetomium | Cladosporium | Emericella | Eurotium | Epicoccum | Fusarium | Geotrichum | Memnoniella | Mucor | Myrothecium | Paecilomyces | Penicillium | Rhizomucor | Rhizopus | Scopulariopsis | Stachybotrys | Trichoderma | Ulocladium | Wallemia | Universial Penicillium, Aspergillus, Paecilomyces |

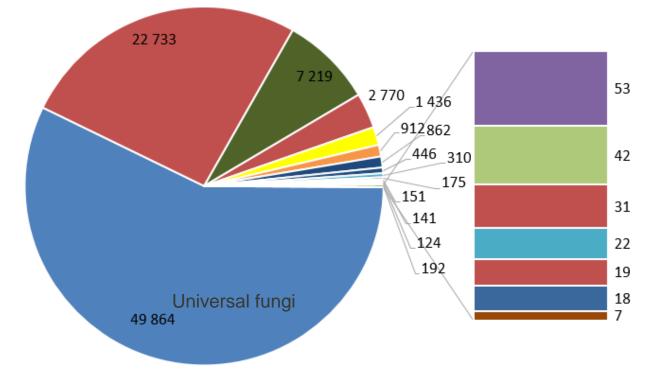
Type of substrate

- Surfaces
- Air samples
- Vacuum samples
- Dust samples
- Bulk samples

Different levels of cell equivalents present in differing samples.


Penicillium sp. Cladosporium sp.

Sampling dust from surfaces


qPCR test of dust sampled by tape lifts

Viable airborne spores – cultured

qPCR results

20 groups of fungi quantified

- Universal fungi
- Trichoderma viride
- Streptomyces
- Cladosporium cladosporioides
- Mucor/Rhizopus
- Cladosporium sphaerospermum
- Aspergillus fumigatus
- Alternaria alternata
- Rhizopus stolonifer
- Stachybotrys chartarum

- Penicillium/Aspergillus/Paecilomyces
- Aspergillus versicolor
- Wallemia sebi
- Cladosporium herbarum
- Acremonium strictum
- Aspergillus glaucus
- Chaetomium globosum
- Penicillium chrysogenum
- Aspergillus niger
- Ulocladium chartarum

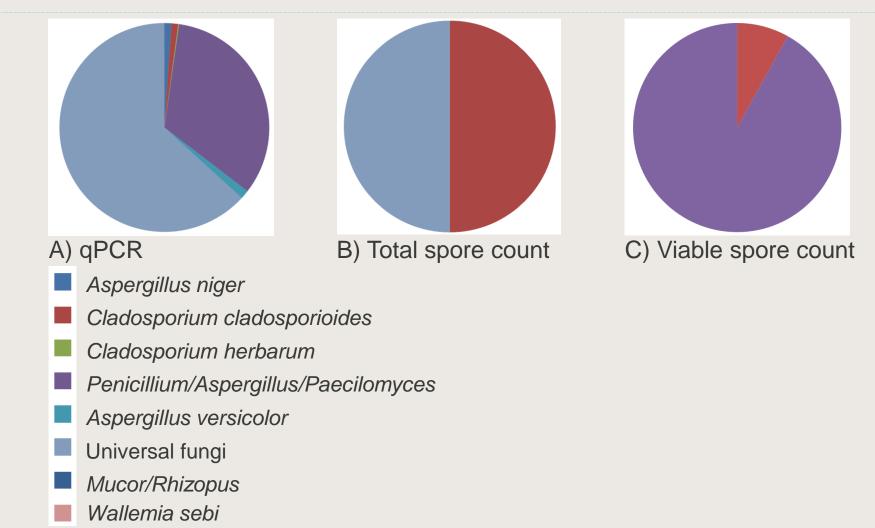
Fungi in surface dust samples

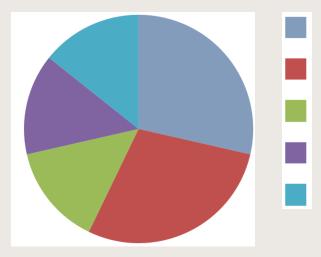
- Chaetomium globosum identified through microscopy.
- Typically the genera Alternaria, Aspergillus, Penicillium and Cladosporium
- Basidiomycetes, Ascomycetes

Eleven to twenty different groups of fungi were identified employing the qPCR technique

Case name	Dust samples number of species		Air samples number of species	
	Microscopy	qPCR	Microscopy	qPCR
Private home A	5	15	-	-
Private home B	2	14	2	12
School building R	5	7	1	7
School building K	-	7	-	9
Private home C	2	15	-	16

Table 1. Number of species/groups of taxa identified in dust and air samples represented by cases.





School building

Private home – Dust samples

Basidiospores *Cladosporium* sp. Ascomycetes *Alternaria* sp. cf. *Aspergillus/Penicillium*

Direct microscopy of dust and mould spores from horisontal surface in bedroom, private home. Percent dust coverage was ranging from 22.3 % to 32 %.

Private home

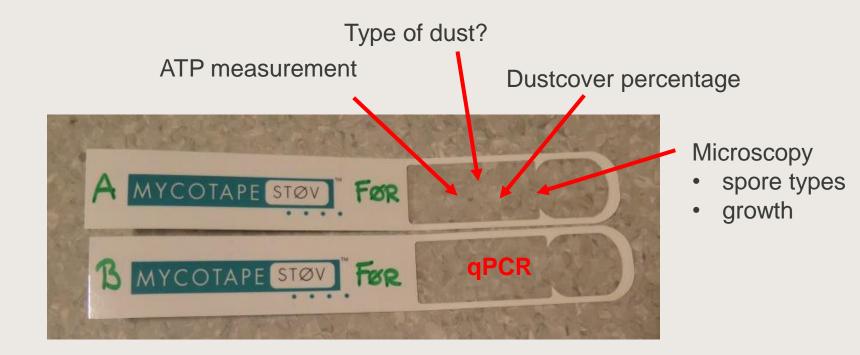
324,653 detected spore equivalents

- Cladosporium cladosporioides
- Cladosporium herbarum
- Penicillium/Aspergillus/Paecilomyces
- Streptomyces
- Aspergillus versicolor
- Acremonium strictum
- Alternaria alternata
- Cladosporium sphaerospermum
- Aspergillus glaucus

- Mucor/Rhizopus
- Penicillium chrysogenum
- Rhizopus stolonifer
- Trichoderma viride
- Wallemia sebi

Applications qPCR tests

- Control after remediation
- Documenting the efficacy of cleaning of surfaces after mould damage, or control of cleaning in general
- Air movements: Does spore spread throughout building?
- Documentation that discoloration is NOT mould growth
- Delineation of mould growth where it is non-visible. How much should be cleaned?



Limitations to DNA based methods

- Expensive
- Loss of information on
 - Dead or living spores/hyphae
 - Dust and particles in the sample
- No information if mould lacks air-borne spores
- Yet DNA seems to be present even in hyphal fragments
- Best result when interpreted with information about moisture, dust etc.

How to complement qPCR?

