Univerza v Ljubljani

Model house for monitoring of performance of wood and quality of insulation envelope

Miha Humar^{*}, Davor Kržišnik, Boštjan Lesar, Sergej Medved, Nejc Thaler, Mojca Žlahtič

Joint COST ACTION FP1303 & FP1404 Workshop Tallinn, Estonia 4th – 5th March 2015

Why

It is difficult for Architects, end users, decision-makers to link the field test site applications with end use

Missleading

Color as an decision making factor

Grey rules them all

Why

To provide information regarding

- Visual appearance
- Maintenance intervals
- Service life
- Insulation
- Corrosion
- Overall performance
- Temperature, phase shift
- Object for education

Timber frame construction

Watertight and vapor-open membrane

Loose-fill cellulose fibres

Façade and decking

Materials used in the façade and decking application on the model house

Wood species	Treatment			
	Untreated			
	Treated with montan wax			
	Surface coated with acrylic coating			
	Treated with copper-ethanolamine solution			
Norway spruce	Treated with copper-ethanolamine solution and montan wax			
	Thermally modified			
	Thermally modified and impregnated with montan wax			
	Thermally modified and impregnated with copper-ethanolamine			
	Thermally modified and coated with acrylic coating			
European larch	Untreated			
	Thermally modified			
Beech	Untreated			
	Thermally modified			
	Thermally modified and impregnated with montan wax			
Sweet chestnut	Untreated			
Scots pine sapwood	Untreated			
Scots pine heartwood	Untreated			
Black poplar	Untreated			
	Thermally modified			
0h	Untreated			
ASN	Thermally modified			

Interior

Milestones

- □ March 2013 start of the project
- □ July 2013 beginning of the construction
- October 2013 façade was finished
- □ May 2014 90% of the sensors are mounted
- May 2014 beginning of observations

 \Box CIE $L^*a^*b^*$

Color changes

October 2013

October 2014

- Color changes
- Fungal disfigurement
- Decay
 - Visual assessment

- Color changes
- Fungal disfigurement
- Corrosion of fasteners

- Color changes
- Fungal disfigurement
- Corrosion
- Moisture content (160 MC sensors)
- Scanntronik Gigamodule

MC Calibration curves

- Color changes
- Fungal disfigurement
- Corrosion
- □ MC
- Temperature 100 # Scanntronik, thermofox

- Color changes
- Fungal disfigurement
- Corrosion
- D MC
- □ Temperature
- Heat flux

- Color changes
- Fungal disfigurement
- Corrosion
- □ MC
- Temperature
- □ t, HCHO, VOC, RH
 - Haarla

- Color changes
- Fungal disfigurement
- Corrosion
- □ MC
- Temperature
- □ t, HCHO, VOC, RH
- Cracks

- Color changes
- Fungal disfigurement
- Corrosion
- □ Temperature
- □ t, HCHO, VOC, RH
- Cracks
- Weather
 - t, RH, precipitation, solar radiation...

Interior

Data

	Measurements per day	Measuremnts per year
Temperature	1260	459.900
MC	240	87.600
Cracks	120	43.800
RH, VOC, HCOOH	336	122.640
Wather	1152	420.480
Sum	3108	1.134.420

First outcomes – MC spruce

29

Summary MC Spruce

	decking	façade north	façade south	façade west	façade east
count	253	281	254	330	296
average	29,9	16,7	15,5	13,5	17,8
U > 25	180	2	0	19	39
U > 20	224	51	12	52	64

Temperature distribution through the wall

Heat flux – window TMT vs spruce

32

Future work and Chalanges

- Correlation between different data and decay and discoloration
- Correlation between lab data and in service performance
- Challenges
 - Huge amount of data
 - Selection of proper software
 - Statistical analysis

Acknowledgement

Silvaprodukt

Slovenian Research Agency

MRAZLES

Thank you

. 6

.