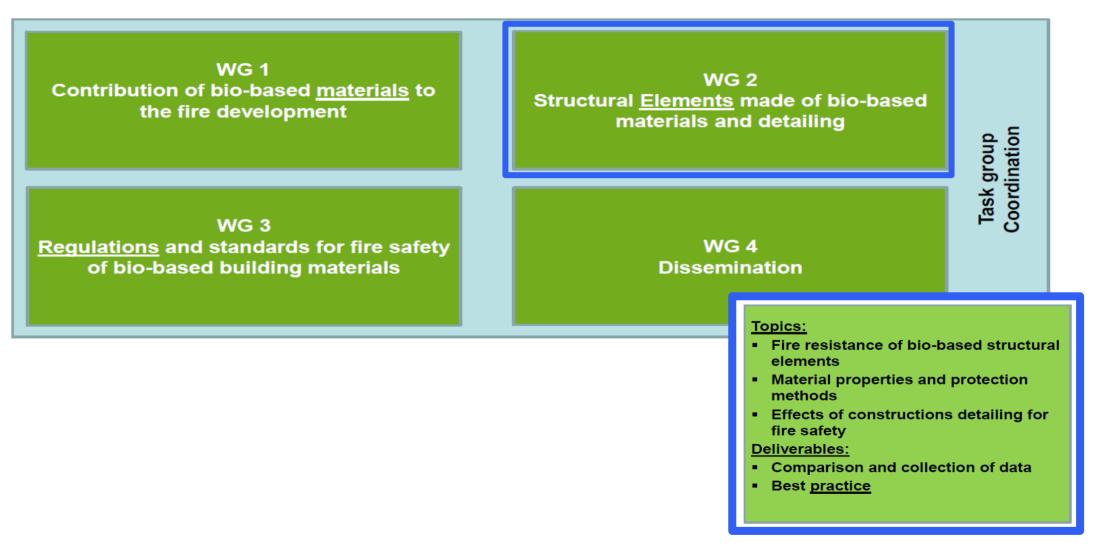
COST Action FP1404 *Fire Safe Use of Bio-based Building Products*

Structural elements made of bio-based materials and detailing – WG 2 of Cost Action FP1404

Luke <u>BISBY</u>


Arup Chair of Fire and Structures, School of Engineering, University of Edinburgh Michael KLIPPEL

Institute of Structural Engineering, ETH Zurich, Switzerland

Working groups of FP1404

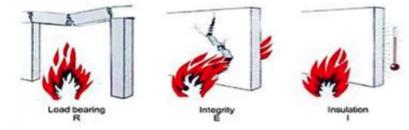
Introduction

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

What structural bio-based materials are interesting in this context?

The key requirement for 'Fire Resistance'

A common *performance requirement* is that:


"Any building shall be designed and constructed so that, in the event of fire, its **stability** will be maintained for a **reasonable** period"

Fundamental Concept: Fire Resistance

- WG2 activities focus on 'FIRE RESISTANCE'
 - Various different meanings are sometimes applied


"Selected structural members and non-structural barriers are provided with fire resistance in order to prevent the spread of fire and smoke, or to prevent structural collapse during an uncontrolled fire"

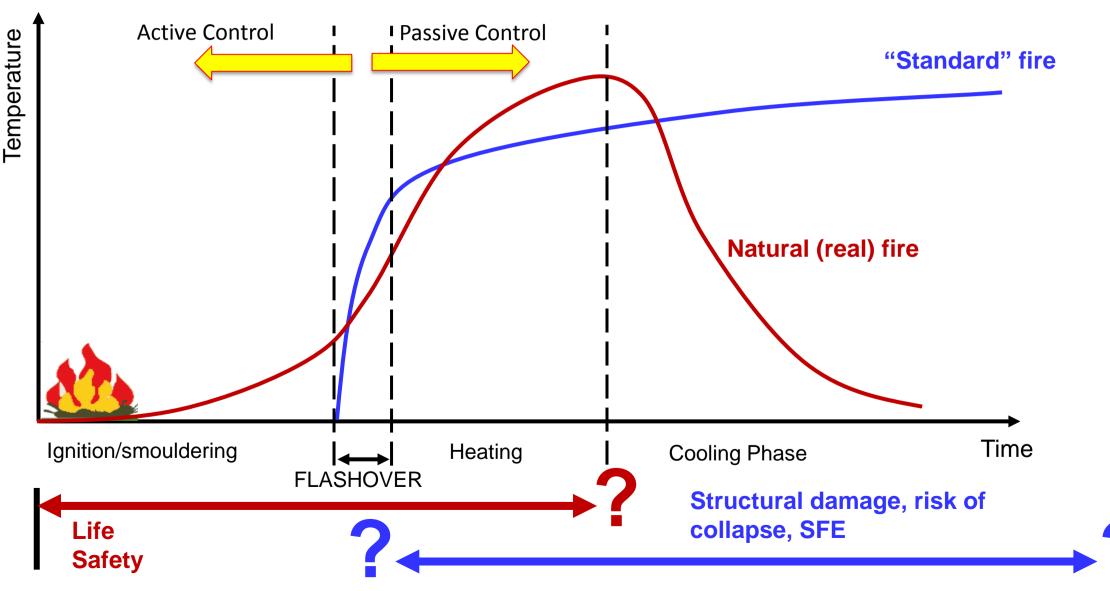
- Fire resistance is 'passive' fire protection
 - Always ready and waiting for a fire
 - As opposed to 'active' measures which only act once a fire has been detected
 - Fire resistance is only one part of the strategy, which usually uses some combination of active and passive

Fundamental Concepts: Importance of Fire Resistance

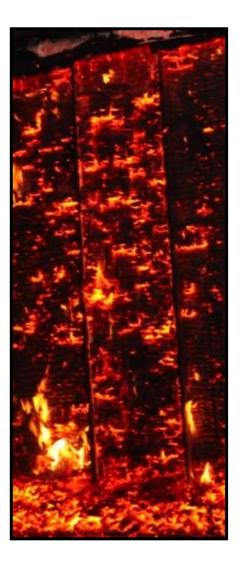
- Little significance in early stages of a fire
- Depends on size of building & fire safety objectives
- Essential in all buildings where fires could grow large before occupants can escape
 - Tall buildings, hospitals, prisons, etc.
- Important for fire service access and rescue
- Most important for property protection and externalities (increasingly?)

Fundamental Concepts: Stages of Fire Development

• Pre-flashover:


- Fire is confined to a room, one or two items burning
- People must escape in this phase
- Post-flashover:
 - Occurs only in confined spaces
 - All surfaces in room burning at once
 - Intense heat survival not possible
 - Critical phase for structural integrity

- Flashover is the transition from a localized fire to combustion of all exposed combustible surfaces
 - Generally occurs when the "hot layer" reaches 600°C
 - Survival is impossible



Fire Development – When do we need fire resistance?

Fundamental Concepts: Performance vs. Prescriptive Codes

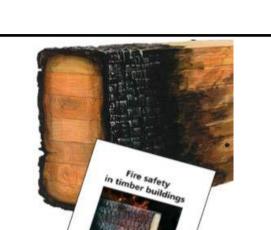
- Until recently only *prescriptive* SFE codes existed:
 - Sets of specific, rigid rules, often with historical or heuristic origins
 - Describe how a building must be constructed
 - Little chance for designers to take a rational, physics-based approach
- Most countries have also adopted *performance-based* approaches:
 - A set of goals or performance objectives
 - State how a building is to perform under a wide range of conditions
 - Allows designers to use any fire safety strategy they wish, provided that adequate safety can be demonstrated

Current situation in Europe

- Increase use of bio-based materials due to performancebased design criteria
- National building regulations effectively opened the market for bio-based building products
- Tools and guidelines often limited to non-combustible building materials
- Significant differences between building regulations in different countries
- Performance of bio-based building materials and structural systems under **non-standard (i.e. 'natural') fire scenarios** is poorly developed
 - Hinders PBD of mass timber buildings

Recent developments

2007-2010 WoodWisdom project:


"Fire Safety in Timber Buildings"

- Outcome: State of the art Guideline
- New Structural timber elements (e.g. CLT)
- New design methodologies
- Guidance for the use of Eurocodes and European system for the verification of fire safety

Revision of EN 1995-1-2:2020

- Simplification (delete RPM, keep RCSM)
- Harmonization
- Improvement / extension

→ Significant input from COST Action FP1404 planned

Projects

For the Revision of EN 1995-1-2:2020

Improvement / extension

- Cross-laminated timber panels, timber-concrete-composite elements
- Connections (various)
- Cladding materials / systems
- Separating function

Projects of general importance

- Database of info on structures fulfilling certain fire classes
- Material property data and fire protection methods in for natural fire exposures
- Guidance and best practice on sequencing and detailing during and after construction

Collaboration between FP1303 and FP1404?

- FP1303 can provide information on a large variety of bio-based building materials and systems which are being developed in Europe:
 - Species and basic thermal/physical/mechanical properties
 - Products (CLT, LVL, Glulam, cassette systems, etc) and adhesives
 - Connection details and materials (metallic, dowelled, timber, polymer composite, etc)
- All types of bio-based structures require defensible fire design methods for their safe, efficient, and confident application in real projects:
 - 1. Load-bearing capacity
 - 2. Integrity
 - 3. Insulation

Thank you for your interest. Please feel free to contact us!

Contact details of the W2 chairs:

Luke Bisby Arup Chair of Fire and Structures, School of Engineering University of Edinburgh, UK, <u>luke.bisby@ed.ac.uk</u>

Michael Klippel Institute of Structural Engineering, ETH Zurich, Switzerland, <u>klippel@ibk.baug.ethz.ch</u>

Future challenges & research needs

Collecting and generating knowledge to remove prescriptive constraints and unlock potential:

1. Database of information on the fire performance of biobased materials, elements, and systems

- 2. Reactive, thermal, and mechanical material properties of relevant bio-based building materials (and fire protection methods)
- 3. Structural response, and hence fire resistance, of novel bio-based structural elements and systems exposed to a range of standard and natural fire scenarios
- 4. Construction **detailing and structural connections for achieving fire safety** in a biobased built environment (best-practice guidelines)