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Insulation products : some statistics 
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• Wood based insulating materials 
are still under used.

• Projected annual growth of 10% 
until 2020.

Source: Alcimed (2002)

To keep up with the 2020 expected regulations. Product development is a must 

Context Materials Methods Results Conclusion



Optimization objectives

High thermal conductivity
Low compression recovery
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Research work 
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Fibres resources and production process

Fibres

Wood fibres

Maritime pine 

Loblolly pine

Poplar

Eucalyptus

Hemp

Thermoplastic 
fibres

PET long

PET short

Context Materials Methods Results Conclusion



Variables 
identification

Influence 
graph

Mounting 
experiments 

Modeling

Optimization

Validation

Process of development of optimal 
design

Context Material Methods Results Conclusion

MO-PSO

Levenberg-
Marquart
algorithm

Interviews



Results



Variables identification
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Raw materials

Fiber production 
process

Energy
Type of defibration plates
Refining Temperature 
Refining pressure

Control Variables

Fibers

Wood fiber diameter 
Wood fiber length
Thermoplastic fiber diameter
Thermoplastic fiber length

State variables

Web formation 
process

Thermoplastic fibers quantity
Wood fibers quantity
Feed rate
Strata number

Web 
Web thickness
Web mass
Uniformity

Web consolidation 
process

Compression 
Temperature
Air flow speed
Residence Time

Product

Density
Fiber orientation
Porous size
Extinction
Rigidity
Thickness



Influence graph
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𝜆(𝜌, 𝛽) = 0,2572 ∙ 𝑇0,77 + 0,17𝜌0,24 ∙ 1 + 0,1883 ∙ 𝑇 +
4𝜎𝑇3𝑑

2
𝜀
− 1 + 𝛽𝜌𝑑

Modelling: Thermal conductivity 

𝛽 = 1827 ∙ 𝑡−1.549 + 3.086
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T: Temperature 
𝜎: Boltzmann constant (5.67*10^-5)
d: thickness (m)
𝜀: Wood emissivity (0,85)
𝜌: Density(kg/m3)
𝛽: extinction (m2/kg) 
t: Fibre finesses (µm)
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𝑃 = (−5.3 ∙ 107 ∙ 𝑡−3.49 + 48.17) ∙ (𝜇3 − 𝜇0
3)

Modelling: Compressibility
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‘Van wyk’ model of compressibility in fibrous material

P: Force (kN)
t: Fibre finesses (µm)
µ: Fibre volume fraction

Structural constant ‘Kp’
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1- 83% of optimal solutions have a 
finesse value between 100 and 200 
𝜇m mixed raw materials??
2- 3 % of the front have a finesse 
value between 300 and 350 𝜇m 
interval of finesse not optimal.
3- Optimal solution have a density 
between 60 and 75 kg.m-3

Pareto front analysis

Solution example:
Density (𝜌) = 70 kg.m-3

Fineness (t) = 80 µm
Force (P) = 24.2 kN
Conductivity (𝜆) = 42.4 mW.mK-1



Conclusion and future works
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Conclusion:

1. Methodology for multidisciplinary complex problem.
2. Human factor have a huge impact on the success. 
3. Ongoing research work. 

Future works:

1. Introduction of production process parameters.
2. Introduction the economic and environmental objectives.
3. Multi-criteria analysis of optimal solutions.
4. Produce and test samples of the optimal solutions.
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