USING REINFORCED GLT LATHS FOR CONSTRUCTING GRID SHELLS WITHOUT SUPPORTS

TÕNIS TEPPAND

ESTONIAN UNIVERSITY OF LIFE SCIENCES
Institute of Forestry and Rural Engineering
Department of Rural Building

COST FP1303 Sofia, Bulgaria Feb 28th – Mar 01st 2017

HISTORY

 Most common grid-shell technology (Mannheim Multihalle 1974)

 Connection of laths with finger joints

Later the connection of grids with node clamps

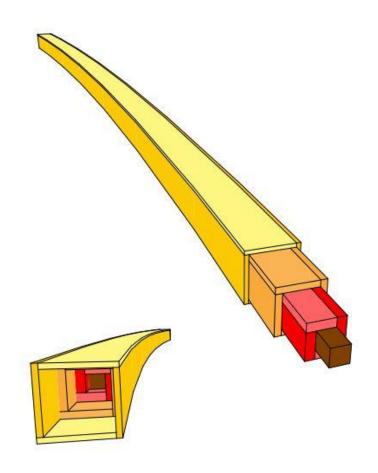
 Huge amount of scaffolding details and construction jacks need to be use (Downland Gridshell 2002)

 Forming the grid-shell shape

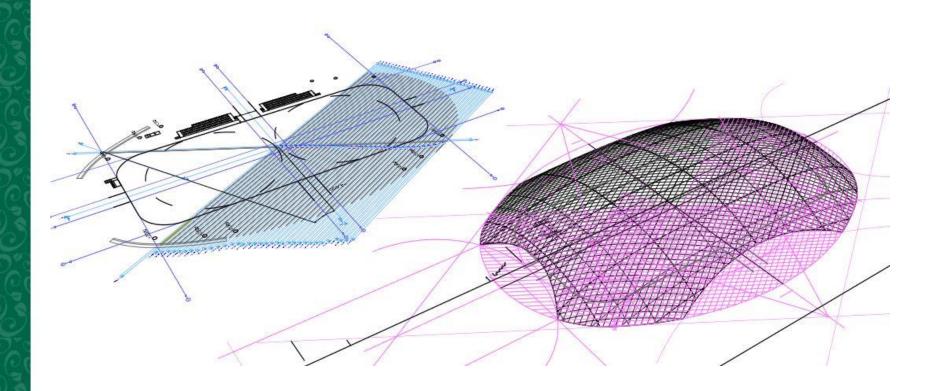
Is it possible to model and construct gridshells cheaper?

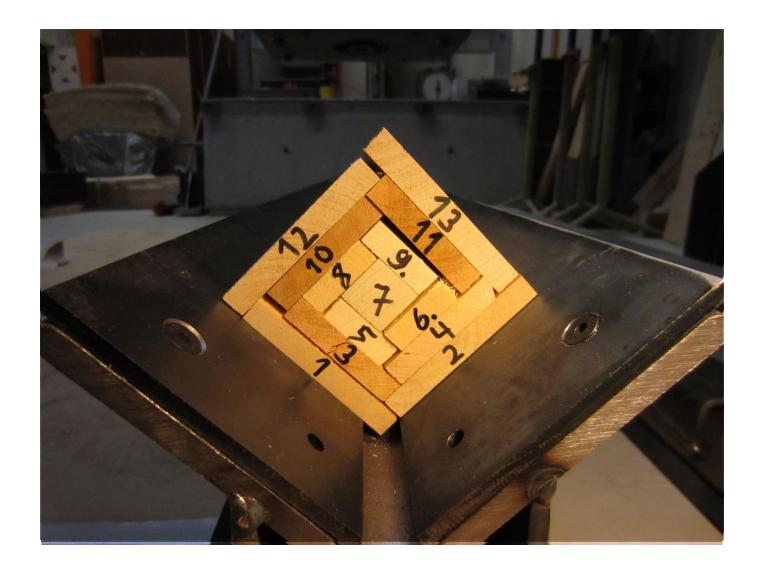
Making a willow basket

IDEA

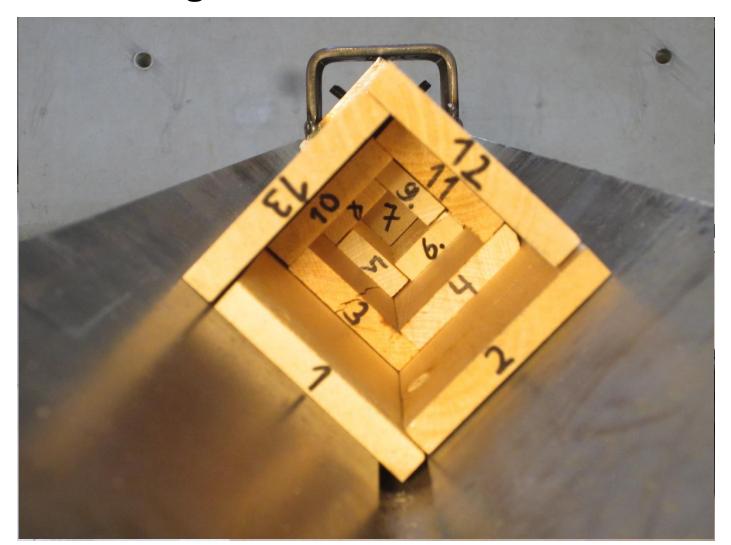


Does it possible without "infinitely" long laths?


- YES, it is...
 ...if we use a special longitudinal joint with mortise on one and tenon on another end
- ...if we use self-locking carpentry joints between layers of laths with help of torsional forces


Sample of modelling grid-shell structure

Riding ground



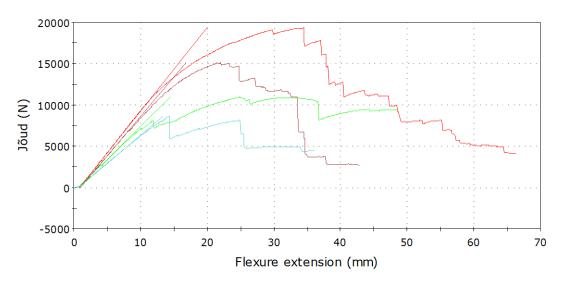
Gluing the lamellas of different species of wood

Forming the tenon and the mortise

Specimen 80x80x1400 mm									
Specimen NR 1 (V_03_KK1)									
Layers (starting from middle)	NR 1	NR 2	NR 3	NR 4					
Material	Oak	Aspen	Birch	Oak					
Cross section (mm)	20x20	10x30	10x50	10x70					
Length (mm)	1400	1400	1400	1400					
Amount for one Specimen (pcs)	1	1 4		4					
Specimen NR 2 (V_03_KK2)									
Layers (starting from middle)	NR 1	NR 2	NR 3	NR 4					
Material	Oak	Alder	Oak	Ash					
Cross section (mm)	20x20	10x30	10x50	10x70					
Length (mm)	1400	1400	1400	1400					
Amount for one Specimen (pcs)	1	4	4	4					
Specimen NR 3 (V_03_KK3)									
Layers (starting from middle)	NR 1	NR 2	NR 3	NR 4					
Material	Ash	Aspen	Birch	Ash					
Cross section (mm)	20x20	10x30	10x50	10x70					
Length (mm)	1400	1400	1400	1400					
Amount for one Specimen (pcs)	1	4	4	4					

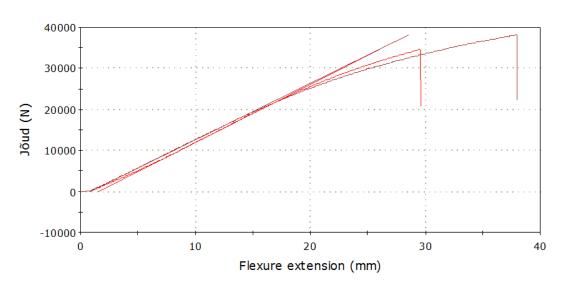
SPECIMEN

BENDING TESTS


Bending test; INSTRON 3369

Specimen as Reference model

Painde katse


RESULTS

Spruce 80x80mm; diagonally Mean failure load (of 3) 15,15kN

Specimen NR 3

Painde katse

Ash+aspen+birch+ ash 80x80mm; diagonally Mean failure load 36,40kN

Final results

Specimen as Reference model					Mean failure load [kN]
Material	Spruce			15,15	
Specimen 80x					
Specimen NR 7					
Layers (starting from middle)	NR 1	NR 2	NR 3	NR 4	
Material	Oak	Aspen	Birch	Oak	24,24
Specimen NR 2					
Layers (starting from middle)	NR 1	NR 2	NR 3	NR 4	
Material	Oak	Alder	Oak	Ash	34,53
Specimen NR 3					
Layers (starting from middle)	NR 1	NR 2	NR 3	NR 4	
Material	Ash	Aspen	Birch	Ash	36,40

Specimen NR 1

Mode of failure

Plastic deformation
 8,13mm of total 37mm

CONCLUTIONS

- Plastic deformation of laths with concentrically glued lamellas is very small
- Pre-stressing during mounting gives to the structure flexural stiffness
- Bending strength is good enough to avoid shear blocks between the laths
- Doubled layers of laths started from the edges with self-locking carpentry joints enable to mount the structure without or minimum supports

THANK YOU FOR YOUR ATTENTION!

TÕNIS TEPPAND

ESTONIAN UNIVERSITY OF LIFE SCIENCES
Institute of Forestry and Rural Engineering
Department of Rural Building

Sofia, Bulgaria 2017

