

COST Action FP1303 - Technical Workshop "Design, Application and Aesthetics of biobased building materials" 28 February – 1 March, 2017, Sofia, Bulgaria

The use of NIR spectroscopy as a quality marker of hydrothermally treated wood

CHARALAMPOS LYKIDIS

Hellenic Agricultural Organization "Demeter" Institute of Mediterranean Forest Ecosystems and Forest Products Technology Laboratory of Wood Anatomy and Technology Athens, Greece

JAKUB SANDAK ANNA SANDAK

Trees and Timber Research Institute CNR-IVALSA San Michele All'Adige (TN), Italy

1. INTRODUCTION - HYDROTHERMAL TREATMENT (HTT)

ADVANTAGES OF HTT DISADVANTAGES OF HTT

- balance colour differences
- improve dimensional stability
- improve decay resistance and durability of wood
- useful tool in wood densification

1. INTRODUCTION - HYDROTHERMAL TREATMENT (HTT)

ADVANTAGES OF HTT

- DISADVANTAGES OF HTT
 - darkening
 - degradation of mechanical properties

1. INTRODUCTION - HYDROTHERMAL TREATMENT (HTT)

Parameters of HTT affecting properties

- Medium (steam saturation, vacuum, others?)
- Temperature
- Duration
- Moisture content of wood
- Other?

Properties affected

- Chemical composition, chemical properties
- Aesthetic properties (Color,)
- Mechanical properties (Hardness, Elastic recovery)
- etc

Attain relationships between HTT parameters and properties of wood

Tools for on-site control/proof of modification degree

SPECIMEN PREPARATION

40mm

European Beech (Fagus sylvatica L.)

- sapwood
- no defects
- not kiln dried

Thickness=22mm

SPECIMEN PREPARATION

40mm

Specimens cut in pairs (Hansson and Antti, 2006) to facilitate comparison between the treated and non treated ones

SPECIMEN PREPARATION

Specimens cut in pairs (Hansson and Antti, 2006) to facilitate comparison between the treated and non treated ones

SPECIMEN PREPARATION

Specimens cut in pairs (Hansson and Antti, 2006) to facilitate comparison between the treated and non treated ones

SPECIMEN PREPARATION

Specimens cut in pairs (Hansson and Antti, 2006) to facilitate comparison between the treated and non treated ones

Measure hardness, L*, a* and b* color coordinates (CIE Lab), NIR, MIR, FTIR, Hyperspectral imaging.

1,2I Lab Reactor (SS)

- thermal/hydrothermal treatments at temperatures up to 225°C (deviation<1°C)
- vacuum treatments up to 120mbar (abs)
- pressure treatments up to 25bar
- equipped with THM treatment component

Surface colour (L*, a* ,b* and ΔE*)

BYK Gardner tristimulus colourimeter

- 45/0 measuring geometry,
- measuring area: 20 mm (diameter)
- D65 illuminant
- 10° standard observer

Brinell hardness - indentation depth

- EN1534:2000
- Niemz and Stübi (2000)

Zwick 2020 Universal Testing Machine.

Sample holder and measurement scheme for the acquisition of the spectra

Modified probe for the acquisition of UV-VIS spectra acquisition using integration sphere

FT_MIR spectra acquisition

UV VIS spectra acquisition using a fiber optic probe

Experimental set-up for hyperspectral imaging of wood samples, developed at CNR-IVALSA

Hyperspectral imaging wavelength calibration

Preprocessing extended multiplicative scatter correction 1st derivative

Chemometrics Principal Components Analysis, Partial Least Squares, 2D spectral correlation Multiple Linear Regression

3D Surface Plot of Mass loss (%) against Treatment temperature (°c) and Treatment duration (min) Mass loss (%) = Distance Weighted Least Squares

prediction of CIE L on the base of MIR spectra (EMSC + 1st derivative)

: Prediction of hardness by means of PLS-R of MIR data, EMSC+1st derivative

Prediction of mass loss by means of NIR spectra

Hyperspectral imaging

Mildly treated sample

Intensively treated sample

5. CONCLUSIONS

- Estimation of thermal modification degree of wood nondestructively can be possible
- Estimation of properties of HT wood could be possible
- Data still needs to be processed, work is underway
- Improve methodology (experimental/analysis) to reduce errors of estimation

