

Fungistatic activity of purine and quinolizidine alkaloids and their derivatives used in DURAWOOD model systems

Patrycja Kwaśniewska-Sip

Poznan, 31.08.2016 Joint Conference: COST Action FP 1303 "Performance bio-based building materials" &DURAWOOD Project

UNIWERSYTET M. ADAMA MICKIEWICZA W POZNANIU

THE AIM OF DURAWOOD PROJECT

concentrates on the contribution of wood durability to sustainability through the development of systems for quality assurance and performance classification of eco-friendly treated wood as alternative to wood treated with traditional preservatives and coatings.

WHAT ARE AN ALKALOIDS?

They are characterized by three key features:

- The nitrogen atom is usually present in a ring system
- The compounds are of natural origin
- The compounds manifests significant physiological effects on human and animal organisms

 H_3

 CH_3

CH₃

sparteine (1), lupanine (2), cytisine (3), caffeine (4)

yerba mate, guarana berries

AIM OF THE STUDY

analyze of the fungicidal activity of alkaloids and expansion of library resources of quinolizidine, bisquinolizidine and purine derivatives as potential fungicides applicable for wood preservation.

RESULTS

Table 1: Antifungal activity of quinolizidine alkaloids against A. niger

No	Compound	Index	of myceliun	n growth in t	he next day	of test
	Compound	II	III	IV	V	VII
1	lupinine	+	+	+	+	+
2	epi-lupinine	+	+	+	+	+
3	angustifoline	+	+	+	+	+
4	11-oxotetrahydrorombifoline	±	+	+	+	+
5	N-metyloangustifoline + tetrahydrorombifoline	±	+	+	+	+
	Control plate	+	+	+	+	+

Table 2: Antifungal activity of derivatives of cytisine

No	Compound	Index o	Index of mycelium growth in the next day of test							
INU	Compound	Π	III	IV	V	VII				
6	cytisine	-	-	-	±	+				
7	cytisine x HBr	+	+	+	+	+				
8	N-methylcytisine	-	±	±	±	±				
9	N-acetylcytisine	+	+	+	+	+				
10	N-acetylcytisine x HClO ₄	+	+	+	+	+				
11	iodo-N-acetylcytisine	±	+	+	+	+				
12	bromo-N-acetylcytisine	±	+	+	+	+				
13	3,5-dibromo-N-acetylcytisine	±	+	+	+	+				
14	3-bromo-N-acetylcytisine	±	+	+	+	+				
15	3-bromo-N-boccytisine	±	+	+	+	+				
16	5-bromo-N-acetylcytisine	±	+	+	+	+				
17	N-propionylcytisine	±	+	+	+	+				
18	Br-N-priopionylcytisine	±	+	+	+	+				
19	N-Boccytisine	-	-	-	-	-				
20	Cl-N-boccytisine	±	+	+	+	+				
21	3,5-chloro-N-boccytisine	±	+	+	+	+				
22	Br-N-boccytisine	-	-	-	-	±				
23	I-N boccytisine	±	+	+	+	+				
24	5-bromo-N-boccytisine	±	+	+	+	+				

DURAW©©D

1) $R = p-NO_2$ 7) R = o-Cl2) $R = m-NO_2$ 8) R = m-Cl3) $R = o-NO_2$ 9) R = p-Cl4) R = o-Br 10) R = o-I5) R = m-Br 11) R = p-I6) R = p-Br 12) R = m-I

 Table 3: Antifungal activity of derivatives of cytisine

No	Compound	Index o	f mycelium	growth in	the next da	y of test
1.0		Π	III	IV	V	VII
25	N-benzylcytisine	-	-	_	-	±
26	p-nitro-benzylocytisina	±	+	+	+	+
27	m-nitro-benzylocytisin	±	+	+	+	+
28	o-nitro-benzylocytisin	±	+	+	+	+
29	o-bromo-benzylocytisin	±	+	+	+	+
30	m-bromo-benzylocytisin	-	-	-	-	-
31	p-bromo-benzylocytisin	-	-	-	-	-
32	o-chloro-benzylocytisin	±	+	+	+	+
33	m-chloro-benzylocytisin	-	-	-	-	-
34	p-chloro-benzylocytisin	-	-	-	-	-
35	o-jodo-N-benzylocytisin	±	+	+	+	+
36	p-jodo-benzylocytisin	-	-	-	-	-
37	m-jodo-benzylocytisin	-	-	-	-	-
38	N-benzoylcytisin	±	+	+	+	+
39	spirocytisin	-	-	-	-	-
40	3,5-dibromo-cytisin	-	-	-	-	±
	Control plate	+	+	+	+	+

Table 4: Antifungal activity of derivatives of bis-quinolizidine

/	No	Compound		·	0	v		
			П	III	IV	V	VII	
	41	(+/-)-sparteine	-	-	-	±	±	
	42	(+)-sparteine	-	+	+	+	+	
	43	(-)-sparteine	-	±	+	+	+	
	44	(+/-)-lupanine	-	-	-	+	+	
	45	(-)-lupanine	-	-	+	+	+	
	46	(+)-lupanine	_	-	+	+	+	
						Real Carlos	M.	-

Index of mycelium growth in the next day of test

Table 5: Antifungal activity of derivatives of bis-quinolizidine

		Index o	f mycel <u>iu</u>	n grow <u>th</u>	in the nex	t day of	
No	Compound			test			
		II	III	IV	V	VII	
41	(+/-)-sparteine	-	-	-	±	±	
42	(+)-sparteine	_	+	+	+	+	
43	(-)-sparteine	-	±	+	+	+	
44	(+/-)-lupanine	_	±	+	+	+	
45	(+/-)-lupanine	-	-	-	+	+	
46	(-)-lupanine	_	-	+	+	+	
47	(+)-lupanine	-	-	+	+	+	
48	15-oxosparteine	-	±	+	+	+	
49	17-oxosparteine	-	±	+	+	+	
50	4-oxosparteine	_	±	+	+	+	
51	2-thiosparteine	-	±	+	+	+	
52	2-thiosparteine HClO4	-	±	+	+	+	
53	15-thiosparteine	-	±	+	+	+	
54	17-thiosparteine	_	-	+	+	+	
55	2,17-ditionosparteine	-	±	+	+	+	
56	2-thiono-17-oxosparteine	_	±	+	+	+	
57	4-acetylsparteine (ax)	-	-	+	+	+	100
58	4-acetylsparteine (eq)	_	-	+	+	+	
59	4-hydroxysparteine (eq)	-	-	±	+	+	
60	2-thio-3-dehydrosparteine	_	-	±	+	+	

Table 6: Antifungal activity of derivatives of bis-quinolizidine

No	Compound	Index of mycelium growth in the next day of to					
NO	Compouna	II	III	IV	V	VII	
60	2-thio-3-dehydrosparteine	-	-	±	+	+	
61	13-oxolupanine	-	-	±	+	+	
62	15-oxolupanine	-	±	+	+	+	
63	17-oxolupanine	-	±	+	+	+	
64	3,3-ditiophenylo-lupanine	-	-	-	+	+	
65	3-thiophenylo-lupanine	-	±	+	+	+	
66	10-tioafyline	-	±	+	+	+	
67	N(16)-oxidesparteine	-	_	+	+	+	
68	$N(16)$ -oxidelupanine $HClO_4$	-	+	+	+	+	
69	3-dehydrolupanine	-	_	±	+	+	
70	15-hydroxylupanine	-	-	±	+	+	
71	13-hydroxylupanine	-	_	-	±	+	
72	multiflorine	-	_	±	+	+	
73	Thiomultiflorine	-	±	+	+	+	
74	Secomultiflorine	-	±	+	+	+	
75	Albina	±	+	+	+	+	
76	Lupanine + Angustifoline	-	-	-	-	-	
	Control plate	+	+	+	+	+	
	chalcon	-	-	-	-	-	
	clioquinol	-	-	-	-	±	

DURAW©©D

Table 6: Antifungal activity of purine derivatives

No	compound	Index of	mycelium	elium growth in the next day of test			
		II	III	IV	V	VII	
77	caffeine	-	-	-	-	-	
78	teobromine	±	±	+	+	+	
79	teophyline	±	±	+	+	+	
80	7-(2-hydroxypropyl) teophyline	±	±	+	+	+	
81	7-(2,3)-dyhydroxypropyl) teophyline	-	±	±	+	+	
82	teophyline-7-acetic acid	-	±	+	+	+	
83	xantine	±	±	+	+	+	
84	aminophyline	±	±	+	+	+	
85	7-(β-hydroxyethyl)teophyline	±	±	+	+	+	
	control	±	±	+	+	+	

SUMMARY

From the 85 tested derivatives 11 has the fungistatic property
There was no antifungal properties of quinolizidine alkaloids
Cytisine (6) and its derivatives

(19,22,25,30,31,33,34,36,37,39,40) showed a significant better properties against *A. niger*.

The tetracyclic alkaloids tested in the first days of the test inhibited growth of the mycelium and in the following days of test their action were inactivated.

SUMMARY

 We chose caffeine for further study because of its very good fungistatic properties and the availability of large amounts of this compound

TLC-B

ISO 846

The study was supported by Norway Grants and the National Centre for Research and Development of Poland (NCBiR) as a part of Polish–Norwegian Research Programme: Superior bio-friendly systems for enhanced wood durability (No. Pol-Nor/203119/32; DURAWOOD).

Thank you for your attention

kwasniewskapatrycja@gmail.com

MAIYI SIWIRSYTET MA MICKIEWICZA POZNANU

Polish-Noriwegian Research Programme