

Performance of bio-based building materials

Thermal conductivity of wood and wood-based panels - review of experimental methods

Łukasz CZAJKOWSKI, Wiesław OLEK

Faculty of Wood Technology, Poznań University of Life Sciences, Poland

Action

FP1303

Joint Conference: COST Action FP 1303 "Performance bio-based building materials" & DURAWOOD Project "Superior biofriendly systems for enhanced wood durability" 30-31 August 2016, Poznań, Poland

Introduction

The precise data on the thermal properties of wood and wood-based materials are required for:

 prediotidgsheatofransfenelugingnprocessinghandes, manufacturing.

Introduction

Traditional experimental methods are limited when determining thermal conductivity of wood and wood-based panels. It is due to the following features:

- anisotropy,
- dependency on temperature and moisture content,
- resistance contact between a sample and heating elements.

Objectives

To assess the methods for thermal conductivity determination and to analyze the accuracy of temperature predictions for the thermal conductivity values obtained by different experimental methods.

Guarded hot plate apparatus

The method assumes that tested materials should be:

- a) isotropic and homogeneous,
- b) oven-dried,

c) in perfect contact with the heater and cooler plates.

Heat flow meter apparatus

The method assumes that tested materials should be:

- a) isotropic and homogeneous,
- b) oven-dried,

c) in perfect contact with the heater and cooler plates.

Methods disadvantages

- a) long duration of measurements
- b) lateral heat flow across the gap and trough a specimen
- c) average value of the property over the range of temperature between hot and cold plates
- d) low roughness of the specimen surfaces

Measured thermal conductivity values are obtained for a wide range of temperature (problems in determining the property dependency on temperature). New approach for determining thermal properties of wood and wood-based panels:

- specific heat a water calorimeter adequately designed and constructed,
- thermal conductivity identification based on the computer-aided inverse analysis.

Wood Sci Technol (2016) 50:537-545

Eur. J. Wood Prod. (2016) 74:577–584 DOI 10.1007/s00107-016-1021-6

ORIGINAL

Thermal properties of wood-based panels: thermal conductivity identification with inverse modeling

Łukasz Czajkowski¹ · Wiesław Olek¹ · Jerzy Weres² · Ryszard Guzenda¹ Łukasz Czajkowski⁻ · Wiesław Olek⁻ · Jerzy Weres² · Ryszard Guzenda¹

Inverse identification

Experimental setup for collecting input data

Scheme of computer aided identification

Validation

OSB, temperature vs. time: modeled for thermal conductivity obtained with inverse identification and measured with heat flow meter apparatus (Kawasaki and Kawai 2006) both compared to experimental data

Validation

Particleboard, temperature vs. time: modeled for thermal conductivity obtained with inverse identification and measured with hot plate apparatus (Sonderegger and Niemz 2009) both compared to experimental data

Conclusions

- Traditional experimental methods are unable to account for temperature dependence and anisotropy of thermal conductivity.
- The developed approach for determining thermal properties ensured high accuracy of the identification.
- The credibility of the thermal conductivity values has to be validated by a comparison of results of heat transfer modeling and experimental data.

Thank you for your