BC BC

Moisture sorption of wool insulation materials: Comparison of material and product testing approaches.

Simon Curling, Graham Ormondroyd

BioComposites Centre, Bangor University, Wales, UK

COST FP1303 30th – 31st August 2016 Poznan Poland

UK sheep and wool industry

Sheep meat production in EU 2014 (source Eurostat)

Why wool?

- Wool is an fibre that has a wide range of uses from clothing to household textiles and to insulation
- Wool is still somewhat of a niche market compared to synthetic or non –organic products
- Other beneficial characteristic's of wool may increase use e.g. improvement of air quality

Not all sheep are the same

Oxford Down

Cambridge

There are over 60 breeds of sheep in the UK

 Mountain, Upland, lowland sheep

Different wool types

- sorted on wool diameter
- Medullation of the wool
- Colour

Cheviot

Welsh Mountain

Herdwick

Swaledale

What is wool?

Wool has..

- Complex structure
- Low thermal conductivity = good insulator
- Thermal properties can be affected by moisture content
- Good sorptive potential

Moisture sorption properties of wool investigated

- Dynamic vapour sorption
 - RH values from 0-95%
 - Small sample size
 - Fast

Isothermal curves

Why are the differences important?

- The thermal properties of the wool will change with moisture content.
- Different sheep breeds wool will have differing moisture contents at similar RH values.
- This will have impact where thermal properties are key

Traditional salt chambers

- Humidity over specific salt solutions
- Larger samples
- Long test time

 Moisture content determined by salt tanks is consistently lower than DVS..

Material vs product?

- Clear indication of the differences between testing the material and the product
- Both give useful and valuable data
- So both material and product scale tests should be used in evaluating existing and new products

Apply to other sorption processes

- E.g. formaldehyde sorption
- Investigating formaldehyde sorption by wool in order to improve indoor air quality
- Using a DVS method

Formaldehyde sorption

 Difference in mass at 0% due to formaldhyde sorption

- Can it be assumed that the bulk properties of the wool will affect formaldehyde sorption in similar way to moisture sorption
- Important when designing experiments and products!

Summary

- Moisture content of wool is breed dependent
- Salt chamber method gives lower values than DVS
- Material vs product testing

Acknowledgements

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 609234

Thank you for listening

• Any questions

