COST ACTION FP1303

HYGROTHERMAL PERFORMANCE OF BUILDINGS AND THEIR MATERIALS

POZNAN, August30th – 31st 2016

THERMAL PERFORMANCE WOODEN WINDOWS DEMAGED BY DECAY / case study/

Zuzana Vidholdová Stanislav Jochim

Technical University in Zvolen, T.G. Masaryka 24, Zvolen, SK 960 53, Slovakia Email: zuzana.vidholdova@tuzvo.sk, jochim@tuzvo.sk

Window: Functional requirements

	~	-1	
1	6		
1			
		-	Y

ARCHITECTURAL: the shape, color, design, ...

DAYLIGHT

THERMAL INSULATION (EN 10077-1, EN ISO 10077-2)

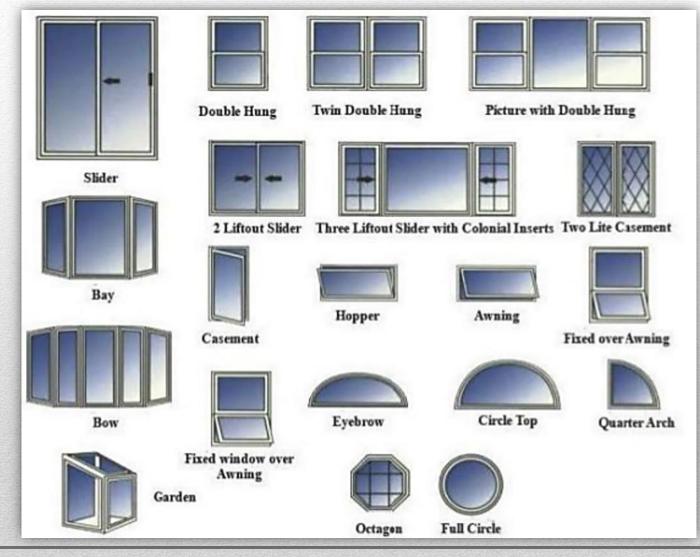
* <u>during winter</u>. Heat transmission - U_w (heat transmission coefficients of the glass U_g and of the frame U_f) heat transmission coefficient Ψ_G / Airtightness joint permeability coefficient a.

during summer: solar heat gain coefficient of the pane.

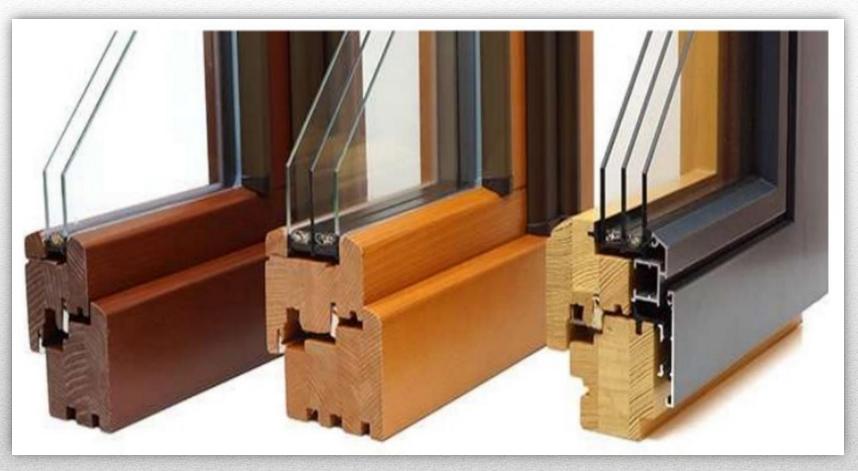
SOUND INSULATION: Airborne sound insulation (ISO 140)

PROTECTION AGAINST THE WEATHER: Resistance to wind load (EN 12210) / Tightness against driving rain (EN 12208)

VENTILATION: Air permeability (EN 12207)


FIRE SAFETY

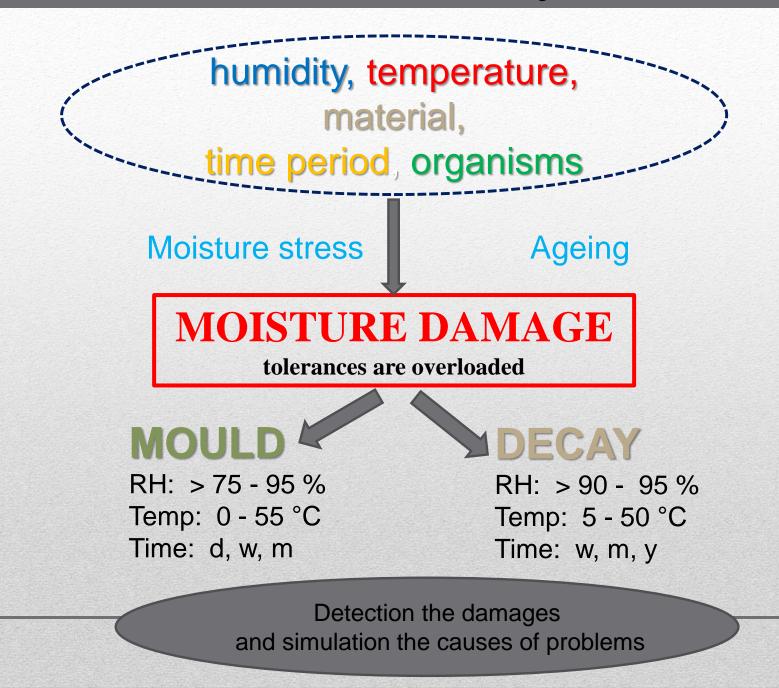
SECURITY: protection of the human being during the usage protection against theft or direct attacks.



Windows are available in a variety of shapes, sizes and materials.

Identifying Window Types

Windows are available in a variety of shapes, sizes and materials.


Wood, Vinil, Aluminium, Fibreglass and Composite Windows Material Options

Windows Styles

Most modern glazing is double glazing

Viitanen et al: Moisture and biodeterioration risk of building materials and structures

WOODEN Windows – surrounding environment

INTERIOR / INDOOR CLIMATE

for standard living rooms: Air relative humidity: 35-55% Temperature: 18-22 °C for bathrooms, swimming pools, wellness, saunas: Air relative humidity: 60-99% Temperature: 24-28 ° C

window

EXTERIOR / WEATHERING CLIMATE

variable, different intensive and combined factors

Solar radiation

Change in temperature

Water incl. changes in humidity, rainfall, icing and hail

Wind incl. flow of liquid and gaseous media

Air dust

Pollutants - gaseous and biological

WOODEN Windows – wood & EN 335

INTERIOR / INDOOR CLIMATE Hazard Class 1

for units exposed inside no contact with ground, under a shalter

window

EXTERIOR / WEATHERING CLIMATE

Hazard Class 3

for units exposed outside above ground with out a shalter

on the interior side moisture condensation mould grow decay

on the exterior side weathering of coating

WOODEN Windows - DETERIORATION

WOODEN Windows – DURABILTY & PROTECTION

STRUCTURAL PROTECTION

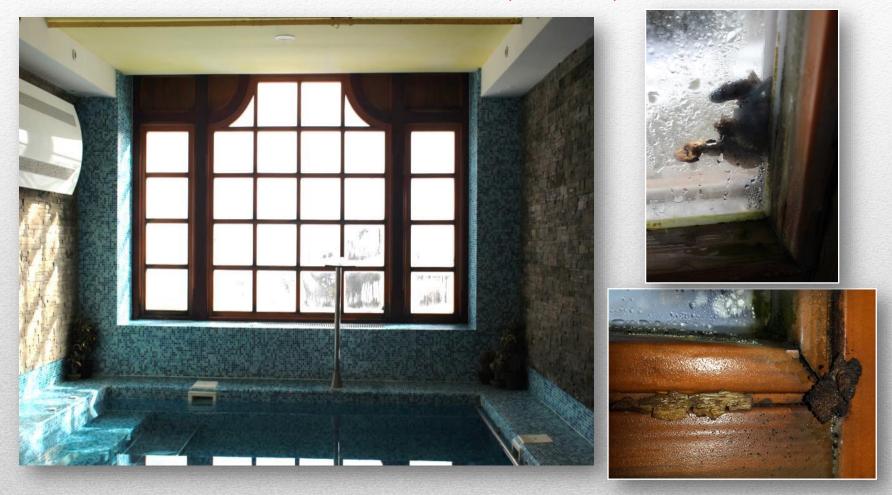
Timber quality (solid / laminated timber)

- Seasoned to a consistent MC=12 \pm 2%
- Durable species Pine, Quercus, Douglas fir, Meranti, Cedar, … or Modified wood

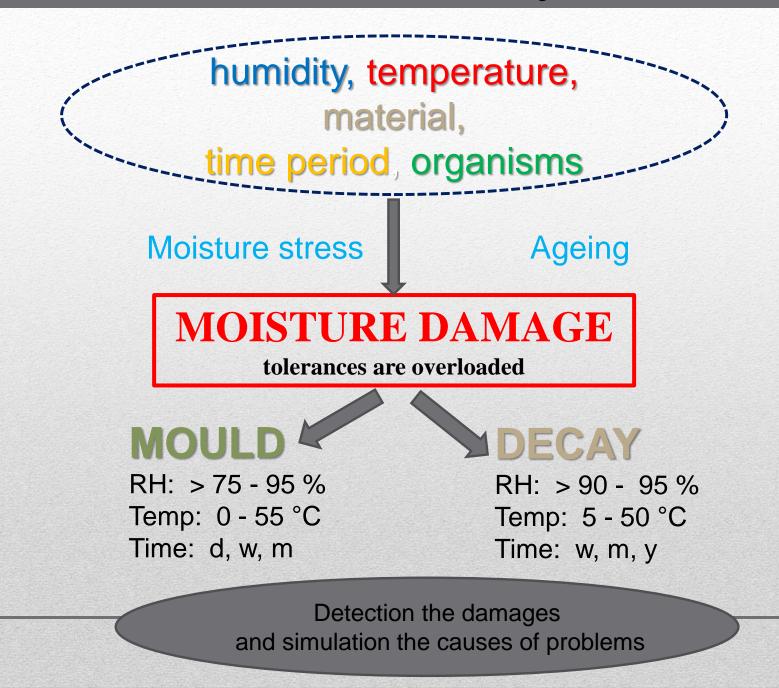
Woodworking of friezes

- round and sloped
- sills include a drip, eaves and drainage groove
 Aluminium (frame, wing) drip

• CHEMICAL PROTECTION Preservative chemicals – type,

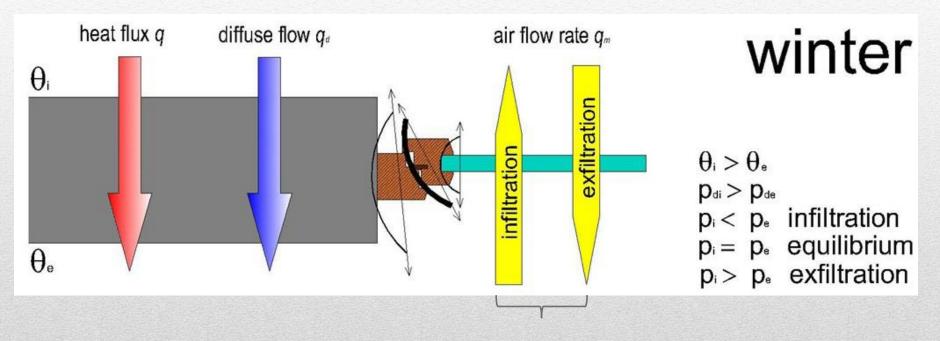

its penetration and retention

Finishing – quality of the coatings, care taken in application and ongoing maintenance regime


WOODEN Windows – DURABILTY & PROTECTION

TYN HA	Probable heartwood life expectancy (years)		
	Natural durability class	Hazard class 1 Fully protected from the weather	Hazard class 3 Above ground exposed to the weather
	Class 1 (highly durable)	50+	40+
n Finite States	Class 2 (durable)	50+	15–40
	Class 3 (moderately durable)	50+	7–15
	Class 4 (non-durable)	50+	0–7

9 years old wooden windows in wellness Tatranská Polianka (Slovakia)



Viitanen et al: Moisture and biodeterioration risk of building materials and structures

A) MOISTURE TRANSPORT ↔ condensation

Through gap between casement and frame at condensation temperature

Air pressure differences

taking water vapour

A)MOISTURE TRANSPORT \leftrightarrow condensation

Diffusion of water vapour - different saturation of water vapour in exterior and interior

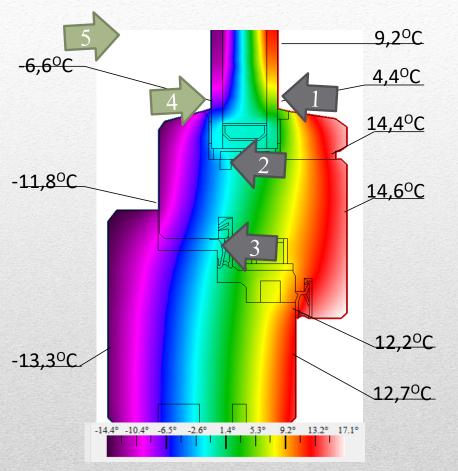
Contain of water vapour

20 °C 17.25 g.m⁻³ -15°C 1.99 g.m⁻³

Interactive accumulation of infiltration or exfiltration and diffusion of water vapour leads to **Condensate** or ice coating in winter period.

A)HEAT TRANSPORT ↔ condensation


	Window A	Window B
Material	Spruce – laminated wood	
Thick of wooden frame [mm]	68	78
Glazing	double	triple
Heat transmission coefficients	1.3	0.9
of the glass $U_G [W/(m^2.K)]$		
Leak under beading	no	yes


CONDITIONS:

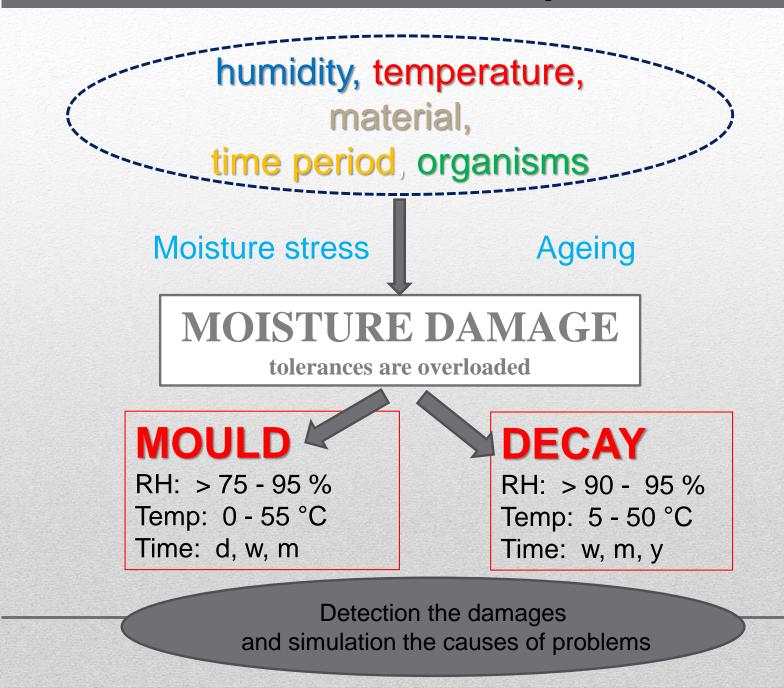
bathrooms, swimming pools, wellness, saunas Interior: Temperature - T_{IN} = 24 - 28 °C, Air relative humidity - RH = 30 - 60 -99 % constant and repeated high RH !!! Exterior: Temperature - T_{EX} = -15 °C

Illustration of the heat flow and surface temperature / software THERM 7.2.7, EN ISO 10077/

Boundary conditions: Interior: $T_i = 20 \ ^{\circ}C$ Exterior: $T = -15 \ ^{\circ}C$

	Window A	Window B
Material	Spruce – laminated wood	
Thick of wooden frame [mm]	68	78
Glazing	double	triple
Heat transmission coefficients	1.3	0.9
of the glass $U_g \left[W/(m^2.K) \right]$		
Leak under beading	no	yes

Condensation occurring in:


- 1. indoor glazing condensation
- 2. glazing joint condensation
- 3. functional gap condensation
- 4. external glazing condensation

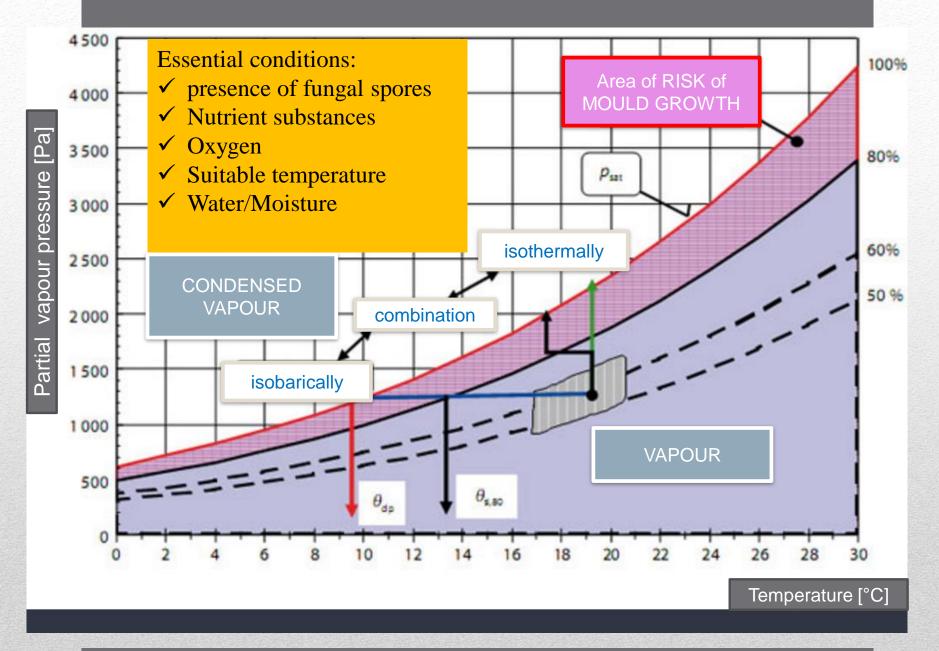

5. supplementary elements condensation (shutters)

Illustration of the heat flow and surface temperature / software THERM 7.2.7, EN ISO 10077/

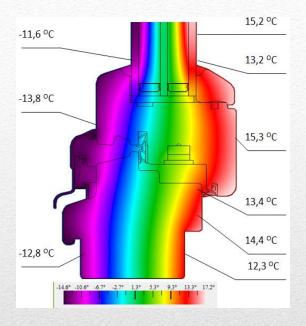
Boundary conditions: Interior: $T_i = 20 \degree C$ Exterior: $T = -15 \degree C$

Viitanen et al: Moisture and biodeterioration risk of building materials and structures

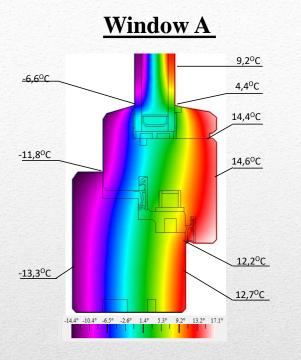
The risk of mould growth

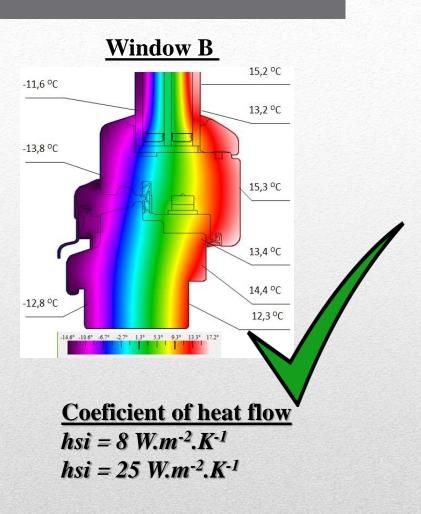
The risk of decay

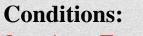
Essential conditions:


- ✓ presence of fungal spores
- ✓ Nutrient substances
- ✓ Oxygen
- ✓ Suitable temperature
- ✓ Water/Moisture

RH: > 90 - 95 % Temp: 5 - 50 °C Time: w, m, y

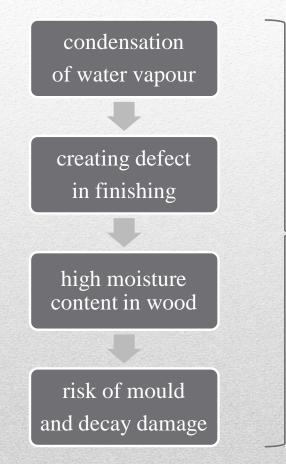

BETTER: Window B


	Window A	Window B
Material	Spruce – laminated wood	
Thick of wooden frame [mm]	68	78
Glazing	double	triple
Heat transmission coefficients	1.3	0.9
of the glass $U_g [W/(m^2.K)]$		
Leak under beading	no	yes



Conditions:

Interior: Temperature: $\theta_i = 20 \ ^{\circ}C$ Exterior: Temperature: $\theta_e = -15 \ ^{\circ}C$ Coefficient of heat flow $hsi = 8 W.m^{-2}.K^{-1}$ $hsi = 25 W.m^{-2}.K^{-1}$



Interior: Temperature: $\theta_i = 20 \ ^{\circ}C$ Exterior: Temperature: $\theta_e = -15 \ ^{\circ}C$

 $\frac{\text{Coeficient of heat flow through glazing}}{U_g = 1.3 \text{ W.m}^{-2}.\text{K}^{-1}} \qquad \qquad U_g = 0.9 \text{ W.m}^{-2}.\text{K}^{-1}$

Conclusion:

In situations of high RH and temperature is necessary:

Design for moisture control Ventilation – $RH \le 55\%$

Window design thick of wooden frame - 78 mm and more triple-glazing the leak under beading

Design of maintenance Cleaning. disinfecing Finishes and coatings

Desing for exchanging of glass In the end of expected life of insulation glass **COST ACTION FP1303**

HYGROTHERMAL PERFORMANCE OF BUILDINGS AND THEIR MATERIALS

POZNAN, August30th – 31st 2016

Thank you for attention

Zuzana Vidholdová Stanislav Jochim

Technical University in Zvolen, T.G. Masaryka 24, Zvolen, SK 960 53, Slovakia Email: zuzana.vidholdova@tuzvo.sk, jochim@tuzvo.sk