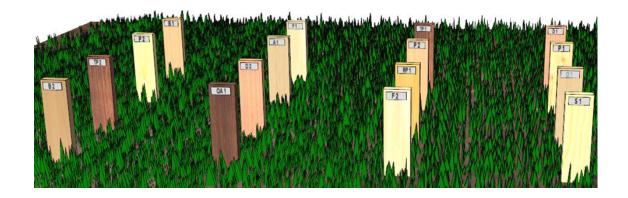
Comparative studies on the material resistance

and moisture performance of four lesser utilized

European grown wood species

Carola Hesse¹, Miha Humar², <u>Christian Brischke¹</u>, Linda Meyer-Veltrup¹


¹Leibniz University Hannover, Faculty of Architecture and Landscape Sciences, Germany ²University Ljubljana, Biotechnical Faculty, Slovenia

COST FP 1303 Technical Workshop 30th - 31th August 2016, Poznan, Poland

Background

Traditional durability testing:
Exposure to ideal conditions for decay organisms

Leibniz Universität

lannover

Today: Consideration of
<u>inherent resistance</u> AND <u>moisture performance</u>

 Comprehensive evaluation of durability of less investigated European-grown species

Leibniz Universität

annover

• Application of a new factor-based model for performance modelling

(Meyer-Veltrup *et al.* 2016)

Wood species

Leibniz Universität

Hannover

02

100

Common juniper (*Juniperus communis*)

European yew (*Taxus baccata*)

Black cherry (*Prunus serotina*)

Rowan (Sorbus aucuparia)

European yew

- Taxus baccata
 - DC 2 (EN 350)
 - Irritant and poisonous
 - Used for
 - Bows
 - Furniture
 - Veneers
 - Carvings
 - Turned objects

Leibniz Universität

Common juniper

- Juniperus communis
 - Not listed in EN 350
 - Used for
 - Fence posts
 - Treenails
 - Small containers
 - Handicraft
 - Smoking

Leibniz Universität

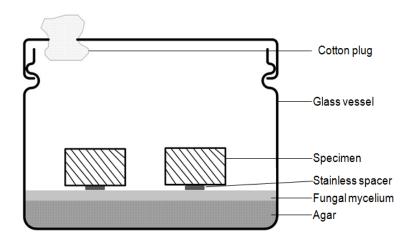
Rowan

- Sorbus aucuparia
 - Not listed in EN 350
 - Used for
 - Cartwright's work
 - Turner's work
 - Woodcarving

Leibniz Universität

Wood species

- Black cherry (Prunus serotina)
 - Not listed in EN 350
 - Invasive plant in Europe (introduced in 1623)
 - Used for
 - Cabinetry
 - Fine furniture
 - Flooring
 - Veneer



Leibniz Universität

Experimental

- Decay tests
 - CEN/TS 15083-1
 - Coniophora puteana
 - Poria placenta
 - Trametes versicolor
 - CEN/TS 15083-2 (terrestrial microcosm TMC)
 - Compost soil
 - Leaching/Ageing
 - With and without EN 84 procedure

Leibniz Universität

Experimental

- Water uptake and release tests
 - W 24 tests
 - 24 h submersion (starting from oven-dry)

Leibniz Universität

- 24 h 100% RH (starting from oven-dry)
- 24 h 0% RH (strating from fibre saturation)
- Capillary water uptake
 - Tensiometer tests
- Soxleth extraction

Results - Decay tests

		C. puteana		P. pla	centa	T. versicolor		
	_	ML _{med} [%]	DC	ML _{med} [%]	DC	ML _{med} [%]	DC	
Rowan	unleached	17.3	4	13.1	3	21.9	4	
	leached	23.3	4	13.4	3	22.5	4	
Black cherry	unleached	15.4	4	6.2	2	3.6	1	
	leached	17.3	4	7.4	2	8.4	2	
Juniper	unleached	1.6	1	0.3	1	0.3	1	
	leached	0.4	1	0.0	1	0.0	1	
Yew	unleached	0.7	1	0.0	1	0.0	1	
	leached	0.3	1	0.0	1	0.0	1	

Results - Decay tests

10;

nd

		C. puteana		P. plac	centa	T. versicolor	
		ML _{med} [%]	DC	ML _{med} [%]	DC	ML _{med} [%]	DC
Rowan	unleached	17.3	4	13.1	3	21.9	4
	leached	23.3	4	13.4	3	22.5	4
Black cherry	unleached	15.4	4	6.2	2	3.6	1
	leached	17.3	4	7.4	2	8.4	2
Juniper	unleached	1.6	1	0.3	1	0.3	1
	leached	0.4	1	0.0	1	0.0	1
Yew	unleached	0.7	1	0.0	1	0.0	1
	leached	0.3	1	0.0	1	0.0	1
			·				

 \rightarrow Effect of test fungus

 \rightarrow Effect of leaching procedure

Results - TMC tests

			ТМС
		ML _{med} [%]	DC
Rowan	unleached	25.3	4
	leached	23.8	4
Black cherry	unleached	16.6	4
	leached	19.9	4
Juniper	unleached	1.4	1
	leached	1.4	1
Yew	unleached	1.3	1
	leached	1.4	1

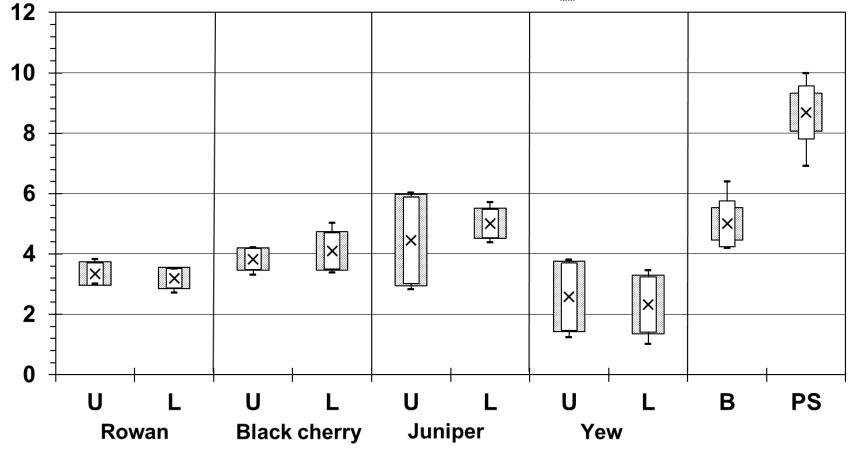
 \rightarrow Durability classification consistent with brown rot test results

Leibniz Universität

Hannover

02

Capillary water uptake

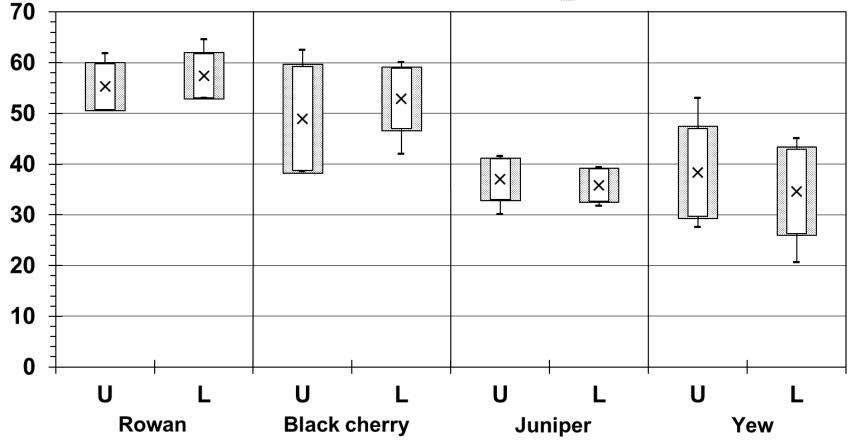

Weight gain after 200 sec [%]

- minimum/maximum x mean value

101

00

[] ± s ± 95% confidence interval

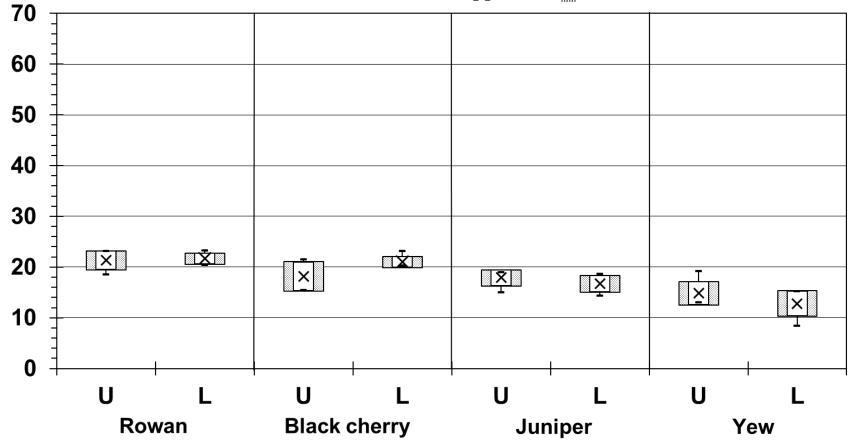


W24 - submersion

11 Leibniz 102 Universität 1004 Hannover

24 h H₂O[%]

- minimum/maximum x mean value

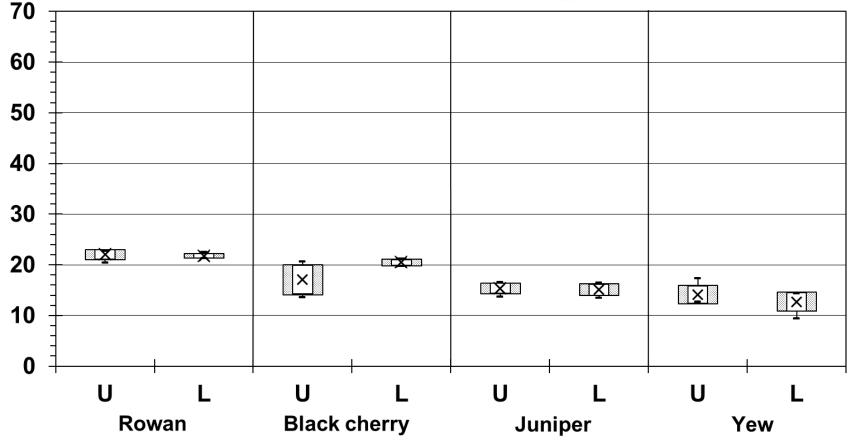

W24 – 100 % RH –

Leibniz Universität 102 Hannover

24 h 100% RH [%]

- minimum/maximum x mean value

100


W24 - desorption

24 h 0% RH [%]

- minimum/maximum x mean value

[] ± s 🐘 ± 95% confidence interval

Factor approach

Leibniz 2 Universität 4 Hannover

<u>Design principle:</u> Exposure $(D_{Ed}) \leq \text{Resistance} (D_{Rd})$

<u>Design principle:</u> Exposure (D_{Ed}) ≤ Resistance (D_{Rd})

$\frac{\text{Resistance dose } D_{\text{Rd}}}{D_{\text{Rd}} = D_{\text{crit}} \times k_{\text{wa}} \times k_{\text{inh}} [d]}$

 D_{crit} = critical dose corresponding to decay rating 1 according to EN 252 (2015) [d] k_{wa} = factor accounting for the wetting ability of the material k_{inh} = factor accounting for the inherent protective properties of the material against decay

Leibniz Universität

lannover

<u>Design principle:</u> Exposure (D_{Ed}) ≤ Resistance (D_{Rd})

$\frac{\text{Resistance dose } D_{\text{Rd}}}{D_{\text{Rd}} = D_{\text{crit}} \times k_{\text{wa}} \times k_{\text{inh}} [d]}$

 D_{crit} = critical dose corresponding to decay rating 1 according to EN 252 (2015) [d] k_{wa} = factor accounting for the wetting ability of the material

 k_{inh} = factor accounting for the inherent protective properties of the material against decay

Leibniz Universität

lannover

D_{Rd} (Norway spruce) = 325

<u>Design principle:</u> Exposure $(D_{Ed}) \leq \text{Resistance} (D_{Rd})$

<u>Resistance dose D_{Rd} :</u> $D_{Rd} = D_{crit} \times k_{wa} \times k_{inh}$ [d]

 D_{crit} = critical dose corresponding to deca k_{wa} = factor accounting for the wetting abil k_{inh} = factor accounting for the inherent prote In words:

325 days with optimum conditions

for fungal growth are needed

Leibniz Universität

Hannover

to obtain "slight attack"

D_{Rd} (Norway spruce) = 325

Resistance dose

- k_{wa} and k_{inh} calculated on the base of Norway spruce

			k _{wa}		k _{inh}	
	CWU		W24		Brown/ white	TMC
		H ₂ O	100% RH	0% RH	rot	
Rowan	0.50	0.98	0.83	0.73	1.65	1.41
Black cherry	0.37	1.08	0.91	0.85	3.28	2.03
Juniper	0.43	1.52	1.03	1.05	5.00	5.00
Yew	0.67	1.51	1.29	1.19	5.00	5.00
Spruce						
Pine sapwood						
Eur. larch						
Oak						

Resistance dose

- k_{wa} and k_{inh} calculated on the base of Norway spruce

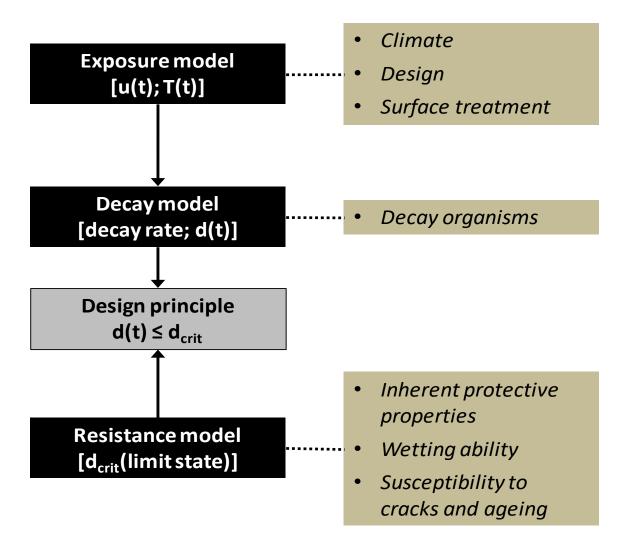
		k _{wa}			k _{inh}		D _{Rd}	D _{Rd}
	CWU		W24		Brown/ white	TMC		relative to spruce
		H ₂ O	100% RH	0% RH	rot			·
Rowan	0.50	0.98	0.83	0.73	1.65	1.41	348	1.07
Black cherry	0.37	1.08	0.91	0.85	3.28	2.03	528	1.60
Juniper	0.43	1.52	1.03	1.05	5.00	5.00	1641	5.05
Yew	0.67	1.51	1.29	1.19	5.00	5.00	1885	5.80
Spruce								
Pine sapwood								
Eur. larch								
Oak								

Resistance dose

- k_{wa} and k_{inh} calculated on the base of Norway spruce

	k_wa				k _{int}	1	D _{Rd}	D _{Rd}
	CWU		W24		Brown/ white	ТМС		relative to spruce
		H ₂ O	100% RH	0% RH	rot			·
Rowan	0.50	0.98	0.83	0.73	1.65	1.41	348	1.07
Black cherry	0.37	1.08	0.91	0.85	3.28	2.03	528	1.60
Juniper	0.43	1.52	1.03	1.05	5.00	5.00	1641	5.05
Yew	0.67	1.51	1.29	1.19	5.00	5.00	1885	5.80
Spruce							325	1.00
Pine sapwood							173	0.53
Eur. Iarch							1090	3.35
Oak							941	2.89

- Durability characteristics completed with different indicators for wetting ability
- Combined effect of wetting ability and inherent material resistance considered for design planning
- Potential for implementing wetting ability data into performance classification as requested for the revision of EN 460



Universität lannover

... for listening

...and COST FP 1303 for granting Carola a STSM to Ljubljana

Performance modelling

Leibniz Universität Hannover

102

100