Enseignement – Recherche Sciences & technologies du bois





Groupe École Supérieure du Bois Higher Education and Research-Wood Science and Technology

> COST Action FP1303 27-28 January, 2014

# The monitoring as a tool to improve performance modelling and service life assessment of timber structures



## Research objectives

- Structural design (mainly deterministic) considers only partially the structure under service and environmental conditions
- This approach can lead to overdesigned structures
- The difference between designed and real behaviours can be significant for timber, as strongly influenced by service and environmental conditions
- The construction of the new building of the ESB offered a great opportunity to follow its global performances with time

 Three-floor structure: wooden trusses and composite concrete-wood slabs. Trusses: length of about 40m on three supports plus a cantilever span of about 8-9m



Design



02/12/2013

Construction





02/12/2013

Construction





#### The aim

- Follow the structural response during the service life
- Understand the structural behaviour in relation to environmental changes (temperature and humidity) and to operational charges
- Compare the design assumptions with the inservice response
- Disseminate feedback and up-to-date results to the industry, code writers, users, etc.

# Strain/stress sensors

- Verify the hypothesis of negligibility of bending moment in the semi-continuous diagonals and in columns
- Measure the stress level of the superior and inferior beams, of some minor members and of few connections
- Deeply investigate the cantilever span movements



# Walls equipment



# **Dynamic measurements**

Composite slab vibration



#### Measurement tests





- Environmental noise
- Impact tests
- Walking tests

- ▶ 6 measurement setups
- 3 accelerometers

02/12/2013

## **On-going developments**

- Dynamic and static monitoring: data analysis and interpretation
- Thermal modelling of walls performances
- Connections and material: local modeling influence on structural behaviour
- Comparison of different structural systems
- New timber buildings to monitor and increase the database
- New sensors application on wood (e.g. fibre optic)

#### **Conclusions**

- For timber structures, at the material scale:
  - Many researchers on material assessment
  - Modelisation of material laws
  - Mainly at laboratory scale but few in-field applications
- For timber structures, at the structure scale:
  - Several applications/models on the thermal behaviour
  - Few applications on mechanical behaviour, at the element scale mainly
  - Modelisation very complex due to connections behaviour
  - Need to follow and understand the real in-service behaviour