ETHzürich

Introduction to moisture relationships in biobased materials

Emil Engelund Thybring EMPA Cofund Postdoc ethybring@ethz.ch

Effects of moisture

Short-term mechanical performance

Long-term mechanical performance

Biobased materials are born in water

Aqueous birthmarks

Water (
$$H_2O$$
), $M_w = 18.01$ g/mol

Deuterium (D) is close to twice as **HEAVU** as protium (H)

For every mol H exchanged with D, mass is increased 1.006 g Cellulose has 18.5 mmol/g OH, i.e. max. increase **18.6 mg/g**

Average water distribution

Average distribution in amorphous biomaterials

ETHzürich

Dimensional instability of biobased materials

Water induced movements

Swelling on several length scales

Murata and Masuda (2001) J Wood Sci, 47:507

A change in moisture content will cause a change in dimensions on several scales

Controlling sorption and swelling

Controlling sorption and swelling

Controlling sorption and swelling

ETHzürich

Implications for durability of biobased materials

Biological degradation agents

Fungal degradation of wood

Fungal degradation of wood

Pore volume in water-swollen cell walls

Flournoy et al. (1991) Holzforschung,45:383

Pore volume in water-swollen cell walls

Flournoy et al. (1991) Holzforschung, 45:383

Increasing cell wall nano-porosity

Fungi use low weight molecular agents (LWMA) to increase porosity and allow access for enzymes

Filling the cell wall with stuff

Hill (2009) Wood Mater Sci Eng, 4:37

Moisture capacity and decay limit

Differently sized anhydrides = OH-substitution **<u>not</u>** important

Permeability of small molecules in ethylcellulose

Steric hindrance in modified biobased films?

Cellulose acetate (C2) is not durable against microbial decay Cellulose propionate (C3) is durable when > 4 OH-groups are substituted

Bacterial degradation

Bacterial degradation

Shipworm and termites

Shipworm and termites

Summary

Degradation by organisms ultimately depends on enzymes

Swelling in water is not enough for dense biomaterials

Enzymes are good but

Physical / chemical violence + enzymes = better

