

REEDCOB - An eco-efficient building technology for monolithic walls based on earth and reeds

Paulina Faria^{1,3}, Paulo Carneiro², Alina Jerónimo², Davide Malheiro¹

Civil Eng. Depart., NOVA University of Lisbon, Portugal
Design architects, Lisbon, Portugal
CERIS - Civil Engineering Research and Innovation for Sustainability,

paulina.faria@fct.unl.pt

Madrid, February 2016

CONCEPT

- Development of a new monolithic wall building technology, with low embodied energy, easy to build and, therefore, environmentally friendly and technically efficient
- Use of local materials: mainly earth and reeds (canes and fibers)

METHODOLOGY

- Production and preliminary characterization of small samples of the wall materials for choosing the mix
- Production of a real scale cellule, assessment of the building technology, building conditions and needed craftsmen skills
- Continuous monitoring of the cellule to assess efficiency and durability

Lime-stone concrete foundation Wood vertical bracing elements, inside the wall Wood vertical formwork elements (to reuse) Sucessive layers of earth-reed fibers mortar and reeds

Lightweight wall, with a big percentage of reed cane fibers and air voids inside the reed canes

MONOLITHIC WALL TECHNOLOGY

Mortar materials	Local excavated earth		Artificial pozzolan	
Volumetric composition	1	0,09	0,06	1

MATERIALS, MORTAR AND SAMPLES

Giant reed canes (Arundo Donax)

MATERIALS, MORTAR AND SAMPLES

Samples 4 x 4 x 16 cm – mortar without reed fibers

Samples 10 x 10 x 20 cm (for flexural) – mortar with reed fibers and layers Samples 15 x 15 x 15 cm (for compression) – mortar with reed lfibers and ayers Samples 15 x 15 x 2 cm (for hygroscopicity) – mortar without reeds

.

Bulk density

TESTS ON SMALL SAMPLES

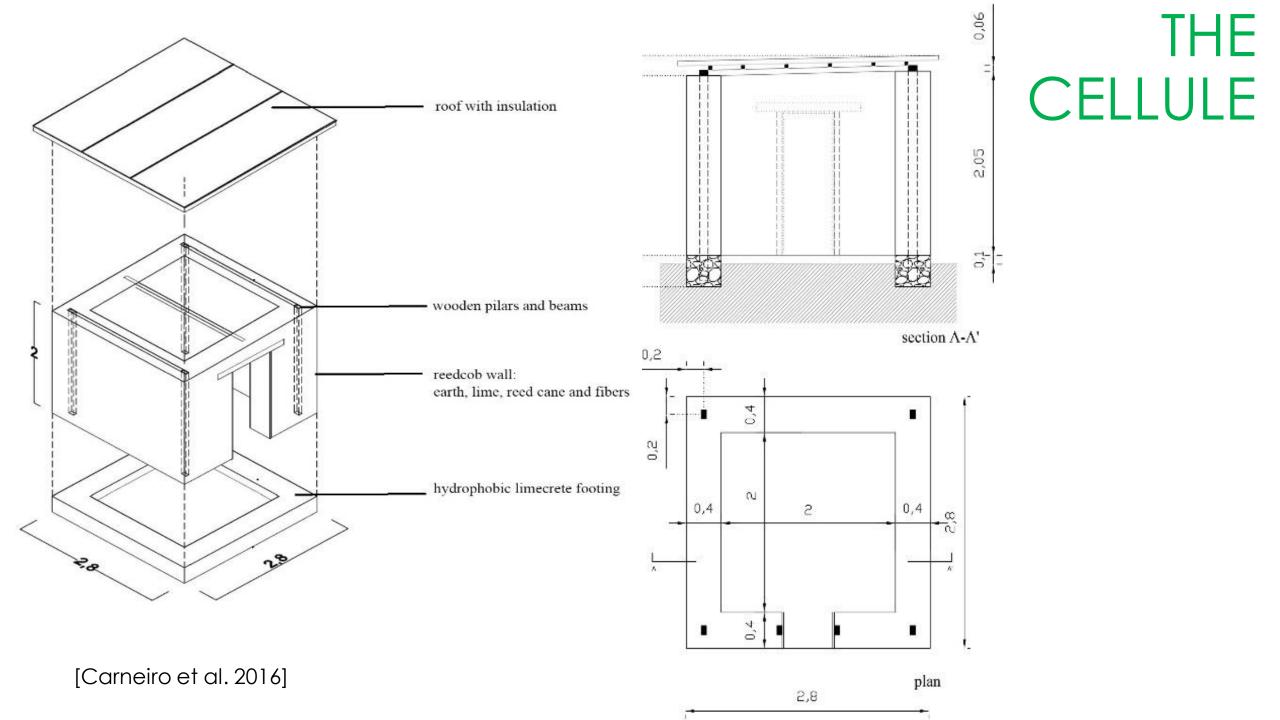
Flexural and compressive strength

Dynamic modulus of elasticity

Water vapor permeability

Thermal conductivity

TESTS ON SMALL SAMPLES



Drying capacity

And others...

Hygroscopicity test

BUILDING THE CELLULE

Hydrophobic lime-stone concrete foundation

Wood vertical bracing elements, to be included in the wall

BUILDING THE CELLULE

Wood vertical formwork elements, lateral to the foundation, defining the wall thickness during the building of the wall (to be reused)

BUILDING THE CELLULE

Sucessive layers of earth-reed fiber mortar and layers of reeds

Simple scafold

BUILDING THE CELLULE

BUILDING THE CELLULE

The mortar can be made by hand but mechanical help is very positive!!!

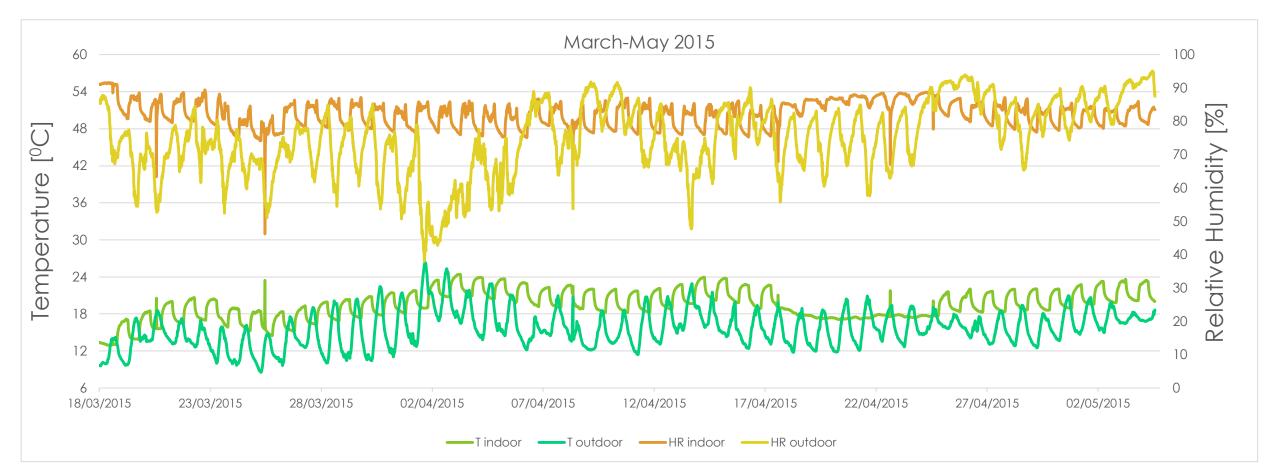
Top of the door opening, top of the wall and roof structure

A group of 2 architects and 3 civil engineering students built the cellule walls in 4 days (July 2014)

BUILDING THE CELLULE

BUILDING THE CELLULE AND ASSESSMENT

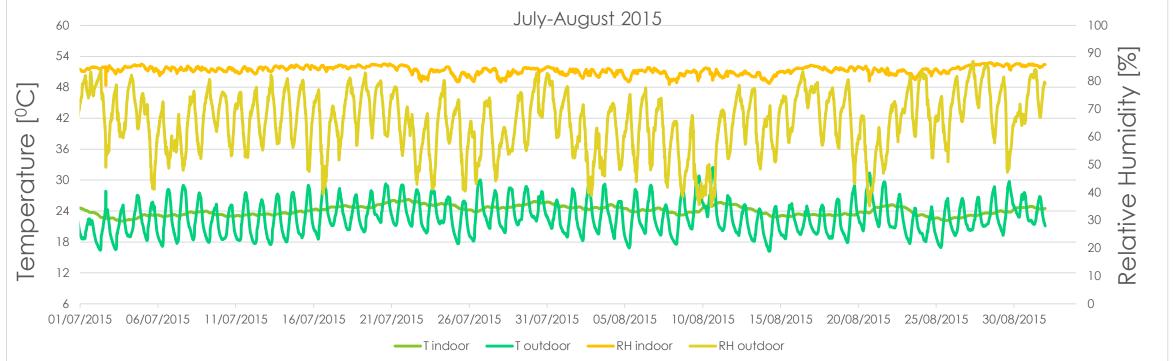
A thermal insulated roof was applied


DURABILITY ASSESSMENT

Good during the 1.5 years of natural exposure

South and West facades were limewashed

North and East facades were left without any rendering or paint system


Cellule: exterior and indoor temperature and relative humidity continuosly monitored

RESULIS

With a simple heating device working from 7pm to 7am (except between 18-23th April): Much stable indoor temperature and with thermal inertia effect

RESULTS

The door is close; there is no ocupation of the cellule: need to implemente indoor air renovation to decrease indoor RH

But very stable temperature indoors (22-26°C) while T outdoors has a high amplitude (16-32°C)

By sclerometer

IN SITU TESTING

By Karsten tubes

CONCLUSIONS

- Lightweight walls with relatively low strength (as expected)
- Building technology very easy and quick to apply
 - by unskilled craftsmen
 - without needs of special equipment
- With low embodied energy: mainly local raw materials earth and reed canes but other canes, like bambu, can be used
- Good durability in natural exposure (for 1.5 years now)
- Thermal inertia and hygroscopic behaviour of earth-reed-based wall contributes for a stable RH and T indoor environment, in comparison with exterior conditions
- A lot to analyse and work on....

THANK YOU FOR YOUR ATTENTION !