Influence of the retention and penetration of Cu based preservatives on the performance of softwoods in ground

Miha Humar,

Boštjan Lesar, Nejc Thaler, Davor Kržišnik, Mojca Žlahtič

University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, miha.humar@bf.uni-lj.si

Copper based wood preservatives

- Copper compounds are one of the most important biocides for wood preservation
 - Traditional: Copper-Chromium (arsenic), boron
 - Use of Cr in EU was limited after 2006
 - New solutions state of the art
 - Copper amine
 - Micronised Cu

Cu EA - issues

- Copper-ethanolamine solutions
 - The most important wood preservatives in EU for wood in ground contact
 - Less effective as CCA and CCB
 - Lack of performance data

Aim

- There are premature failures of copper treated wood reported
- Lack of performance data

Retention specification

Chromfreie Holzschutzmittel Zulassung Deutschland

Schutzmittel	Wirkstoffe		Zu	lassung	Zulassung			
			De	utschland	NTR	Frankreich		
			GK 4	GK 3	Finland, Norwegen, Dänemark, Irland u. Schweden			
					GK 4	GK 4		
Wirkstoffe - Kı	pfer/Kupfe	r-HD	O/Bor					
Wolmanit CX 10	Kupfer HDO Bor	16,3 3,5 5,0	7 kg (4)kg	4 kg (3)kg	9 kg (18) kg	7,5 kg (15)kg		
Wolmanit CX 8	Kupfer HDO Bor	13,04 2,8 4,0	7,5 kg (5)kg	5 kg (3,75)kg	11 kg (22) kg	9,4 kg (18,4)kg		
Wolmanit CX 8 WB	Kupfer HDO	13,04 2,8	7,5 kg	4 kg	11 kg (22)			
Wirkstoffe – Ku	ipfer/Ammo	nium	verbindi	ingen (Quat) I	Bor			
Kemwood ACQ 2300	Quat Kupfer	8,4 15,2						
Kemwood ACQ 1900	Quat Kupferhydroxidcal	4,75 const 17,30	15 kg	12,5 kg	18 kg (36) kg	7		
Korasit KS	Quat	8,4 15,2	9 kg (6)kg	4,5 kg (3)kg		15 kg (30)kg		

Retention specification

Wood preservatives approved by the Nordic Wood Preservation Council

Wood preservative	Retenti	on require sapwo Cl	Approval valid until	Certificate No		
	M	Α	AB	В		
WATER-BORNE TYPE						
CCA products OK-K33 type C*	24.0	12.0	-	4	2009-12-31	79
CCP products						
Kemwood KCP Flytande	60.0	30.0	30.0	×	2010-12-31	122
Celcure P50 Flytande	60.0	30.0	-	×	2012-12-31	3
CC products						
Kemwood KC 73#	~	10.0	10.0	-	2008-12-31	11
Korasit KC-s	26.0	19.0	-	-	2012-12-31	186
Tanalith CC oxide 3403	26.0	18.0	-	*	2009-12-31	98
CB + triazole products						CONTRACTAL CO
Tanalith E/Tanalith E 3491	-	18.0	13.0	-	2011-12-31	
Tanalith E-7/Tanalith E 3492	-	16.0	8.0	-	2009-12-31	168
ACQ products					0040 40 04	07
Kemwood ACQ 1900	-	36.0	19.0	-	2012-12-31	87
Celcure AC 800	-	36.0	19.0	19.0	2012-12-31	181
ACQ 2200	-	-	12.0	-	2009-12-31	175
Celcure AC 500	- 1	-	12.0	-	2009-12-31	183

Retention specification

Table 2: Retention of wood preservatives for different wood species and service lifes (kg/m³)

		Wood								Wood	preserv	ative in	ı kg/ı
Country	Durability requirement		CCA		CCA CCB		CCF		Impralit KDS		Wolmanit CX		Cı
	in years	EHC 1)	3	4	3	4	3	4	3	4	3	4	3
Germany ²⁾	Not specified ³⁾	Soft- and hardwood ⁴⁾	4	6	4	8	5	6	3	4	2-5 5)	3-5 5)	
	40-50	Poles, pine ⁶⁾		14		14		14					
	20	Poles, spruce ⁶⁾		10		10		10		10			
	7)	Sleepers, beech ⁶⁾											
	7)	Sleepers, Oak ⁶⁾											

Current national approaches to defining retentions in use Hubert Willeitner, Germany

Penetration?

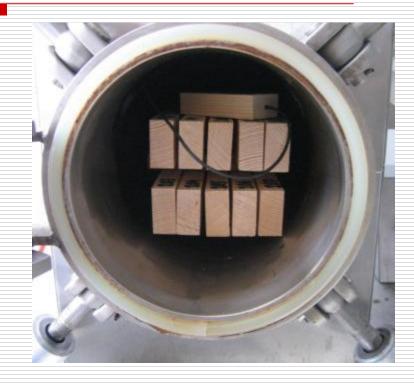
February 2008

February - 2016

Aim

How penetration and retention affects the performance in ground?

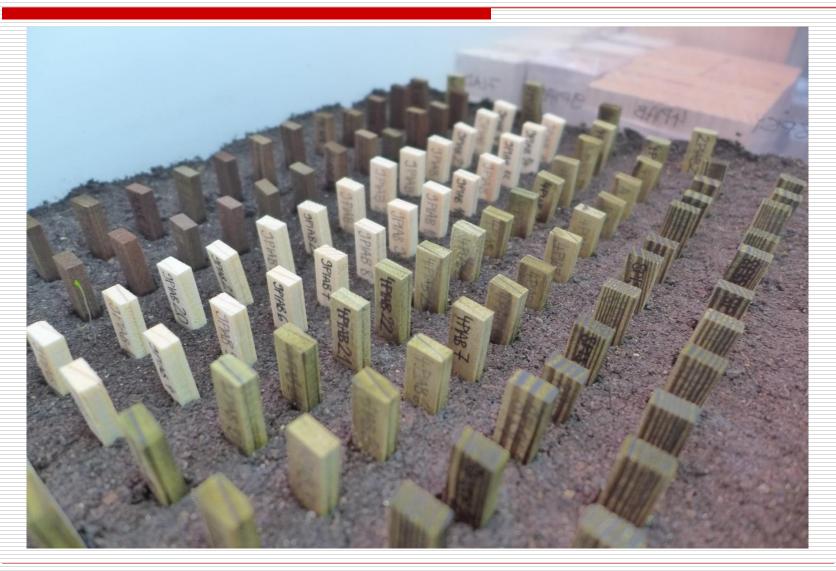
Material


- □ Three wood species
 - Scots pine sapwood (Pinus sylvestris)
 - Norway spruce (Picea abies)
 - European larch (Larix decidua)
- □ Dimensions EN 252, EN 113; ENV 807
 - $= 2.5 \times 5.0 \times 50 \text{ cm}^3$
- Copper-ethanolamine based preservative solution (two concentrations)

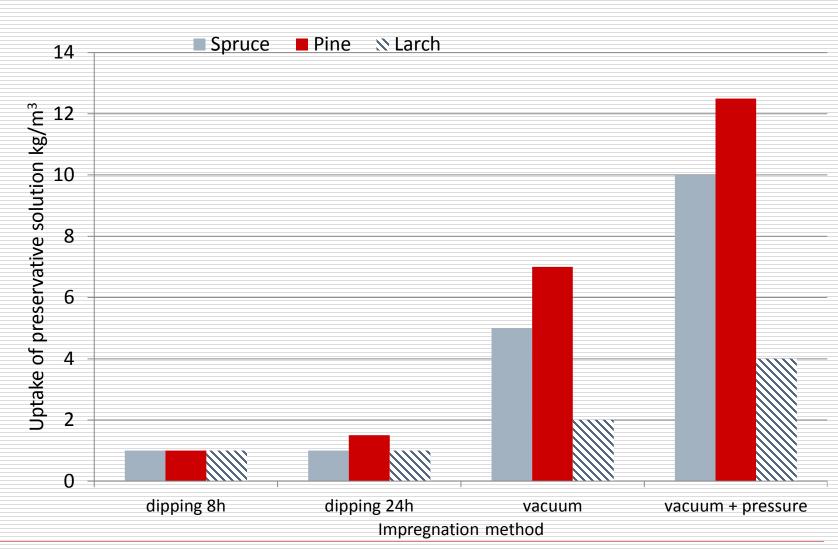
Methods

- Impregnation procedures
 - Dipping 8 h
 - Dipping 24 h
 - Vacuum (0,1 bar-30 min)
 - Vacuum pressure (0,1 bar-30 min; 10 bar-3 h; 0,2 bar-10 min)

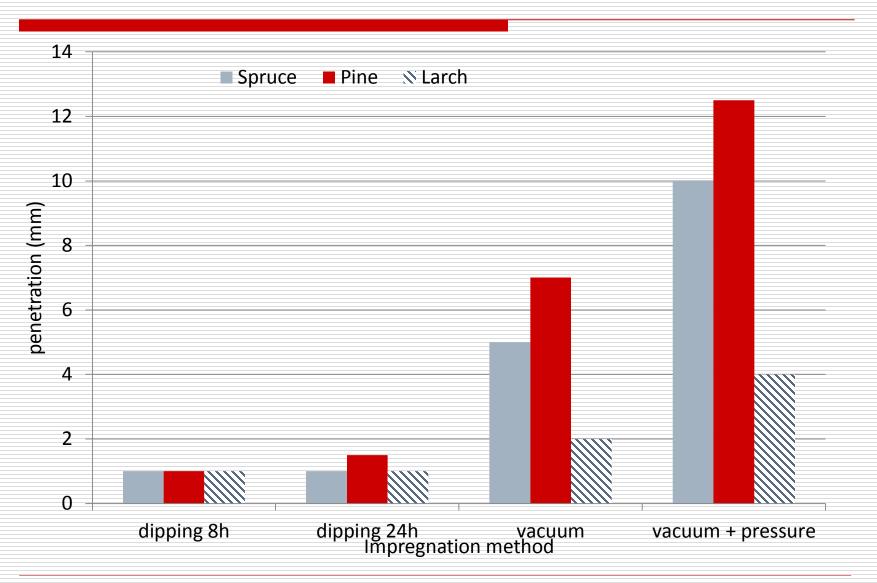
Zalaegerszeg Wolfsberg Exposure Golo Brdo Trnovec Topol pri 104 Medvodah Prijedor Gabrie Podgrad Babna Gora Šujica Ljubljana Zaloška cesta Dobrova Tuji Grm Vnajnarje Ljubljana grad 🕱 Litijska cesta Dolgo Brdo Ljubljana Podsmreka Besnica Volavlje Češnjica Brezje pri Brezovica Dobrovi pri Ljubljani Prežganje Javor Malo Podmolnik 742 Trebeljevo Orle Brdo Črna vas Žabnica ov Grič Pleše Plešivica Pance Repce Lanišče Lipe Notranje Škofljica Gorice Bevke Polica Krajinski park Ljubljansko Mala Stara vas barje Matena Cikava Brest Brvace Planinca Preserje Grosuplje Višnja Dolenja Drenik Bistra Gatina Brezovica Kriška vas Žalna Vino Ponova vas


EN 252

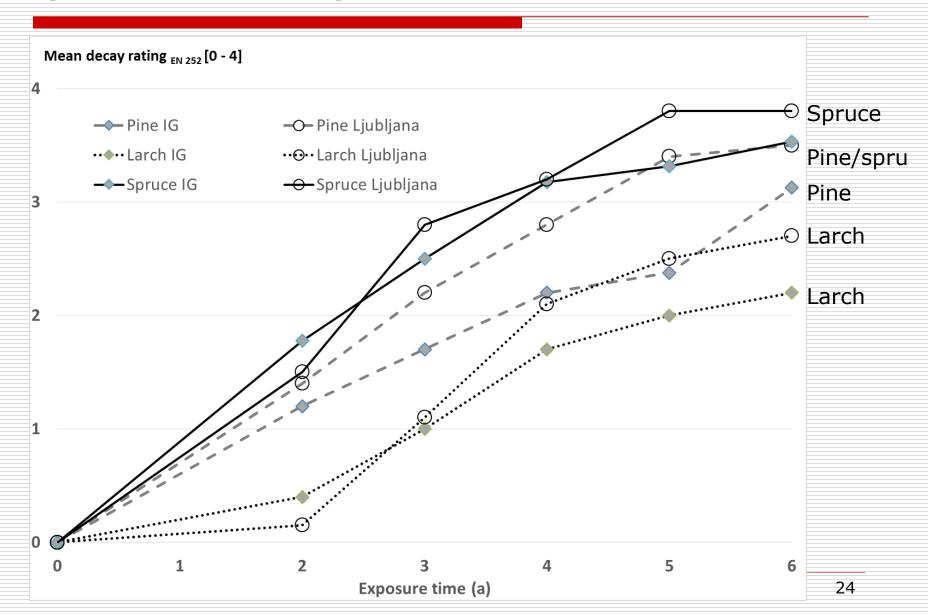
Grading system

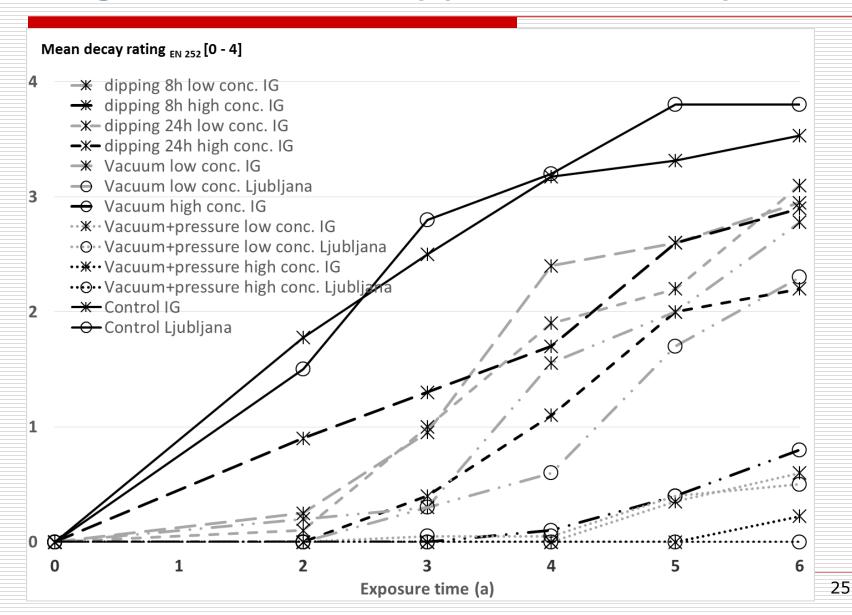

Rating	Description	Definition
0	Sound	No evidence of decay. Any change of colour without softening has to be rated as 0.
1	Slight attack	Visible signs of decay, but of very limited intensity or distribution: - changes which only reveal themselves externally by very superficial degradation, softening of the wood being the most common symptom, to an apparent depth in the order of one millimetre
2	Moderate attack	Clear changes to a moderate extent according to the apparent symptoms: - changes which reveal themselves by softening of the wood to a depth of approximately 1 to 3 millimetres over more than 1 cm² per stake.
3	Severe attack	Severe attack - marked decay in the wood to a depth of more than 3 millimetres over a wide surface (more than 20 cm²) or by softening deeper than 10 mm over more than 1 cm² per stake
4	Failure	Impact failure of the stake

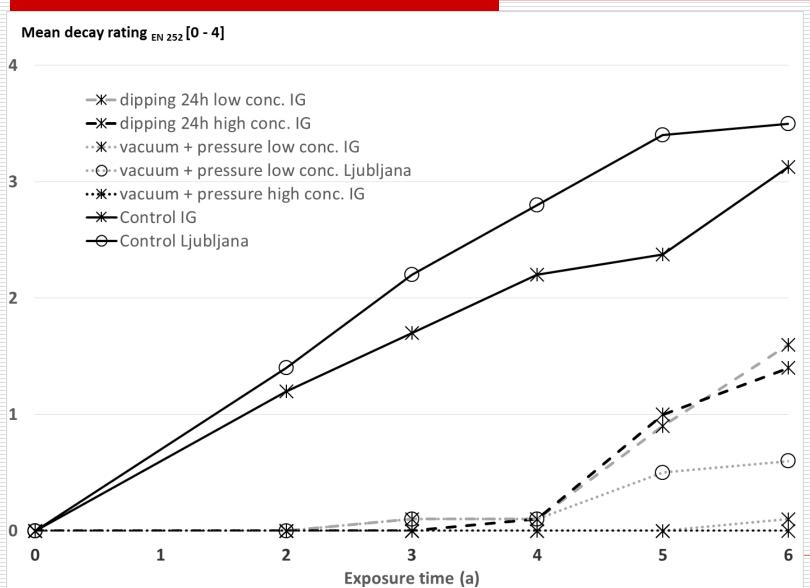
ENV 807

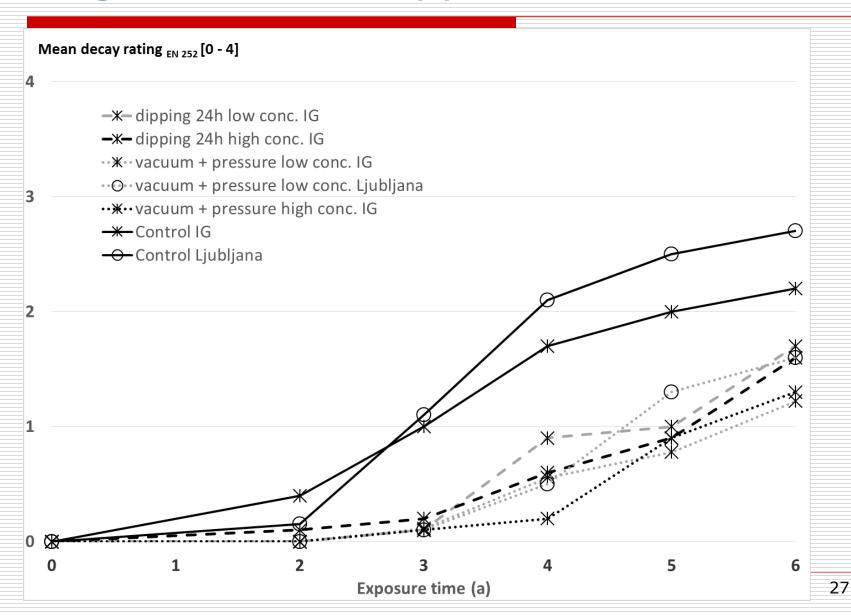


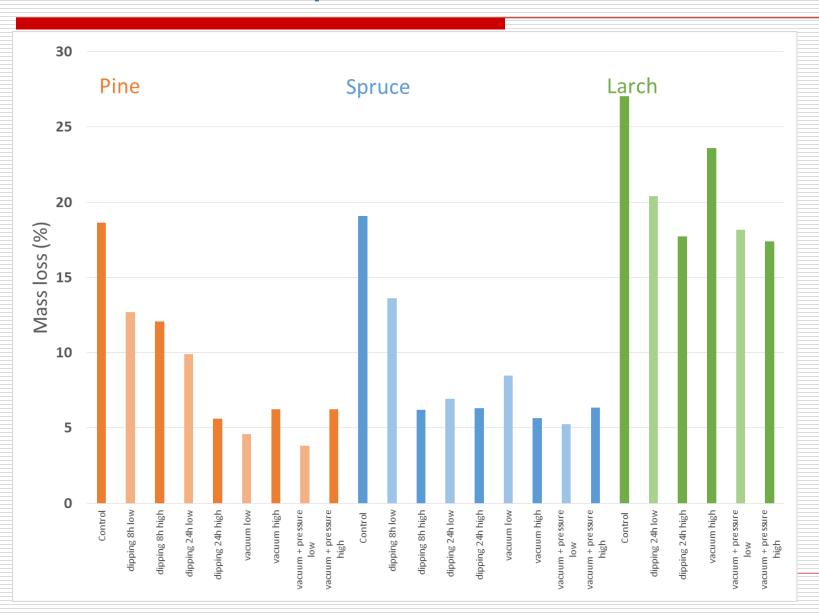
Results


Uptake of preservative solutions


Penetration

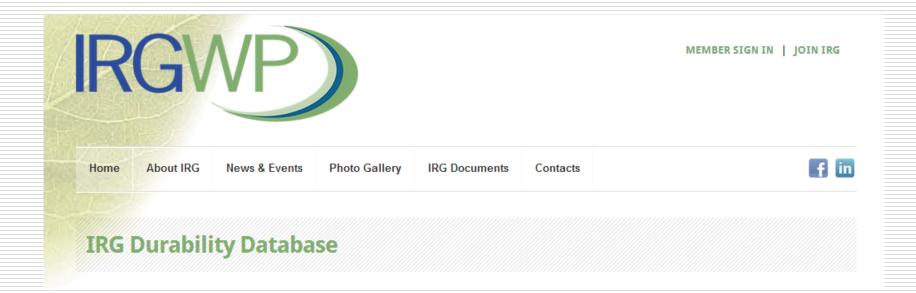

Degradation of control specimens (2009 – 2015)


Degradation of copper treated spruce


Degradation of copper treated pine

Degradation of copper treated Larch

ENV 807 comparison


Conclusions

- If copper-ethanolamine based wood preservatives are not applied in sufficient retention and penetration, decay is postponed only for few years.
- Quality control of retention and penetration is a must

Future work

- ☐ Perform EN 113 studies
- □ Above ground studies

Original data

http://www.irg-wp.com/durability/index.html

32

Thank you

