

• Properties of Sandwich Panels Produced from MDF and

Thermally Compressed Veneers

Assoc. Prof. Umit BUYUKSARI

Duzce University

TURKEY

Introduction

- Densification of wood
- Effects of densification on properties wood
- Surface quality
- MDF

Objectives

- To determine some of the physical and mechanical properties of sandwich panels
- To improve mechanical properties of sandwich panels
- To improve water absorsorption and thickness swelling of sandwich panels

Materials and Methods

- MDF panels (12x500x500 mm)
- Beech (Fagus orientalis Lipsky) veneer (1.5x500x500 mm)

Thermal compression

- Hot press
- 2 press pressure (4 MPa and 6 Mpa)
- 3 press temperatures (150 °C, 180 °C and 200 °C)
- 8 minutes
- 4 veneer for each trial.

Production of sandwich panels

- Urea formaldehyde (UF) : 160 g/m²
- Press pressure: 2.6 MPa and a
- Press temperature : I 10 °C
- Press time: 4 min

Experimental design

		Veneer Compression			Sandwiched Panels		
Panel Type	Process	Pressure (MPa)	Temp. (°C)	Time (min.)	Pressure (MPa)	Temp. (°C)	Time (min)
А	MDF Control	-	-	-	-	-	-
В	Laminated w/o compression	-	-	-			
C	Laminated	4	150				
D	Laminated	6	150	8	2.6	110	4
Е	Laminated	4	180				
F	Laminated	6	180				
G	Laminated	4	200				
Н	Laminated	6	200				

Methods

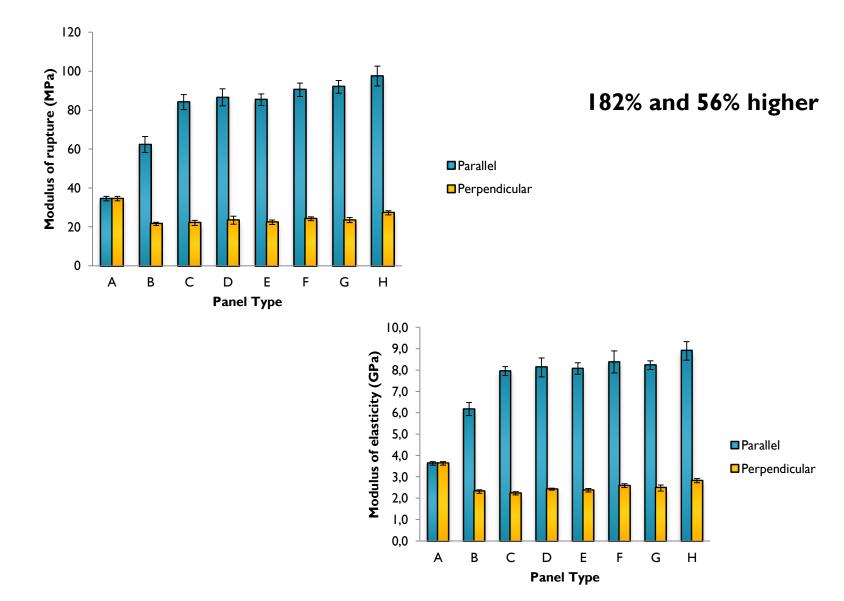
- Reduction of veneer thickness
- Modulus of rupture (MOR)
- Modulus of elasticity (MOE)
- Water absorption (WA)
- Thickness swelling (TS)

RESULTS AND DISCUSSION

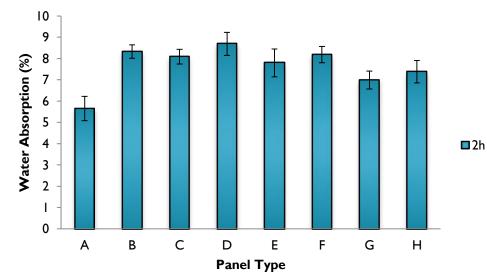
Reduction of thickness

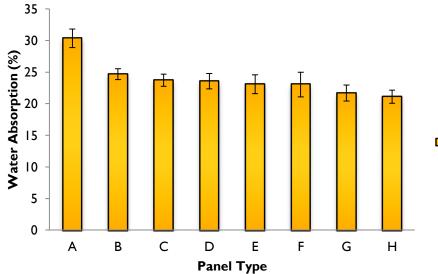
Panel type	Reduction of thickness (%)
Α	Uncoated
В	Not compressed
С	13.4
D	21.1
E	14.2
F	27.8
G	21.1
Н	39.8

- Group H 💻
- Group C

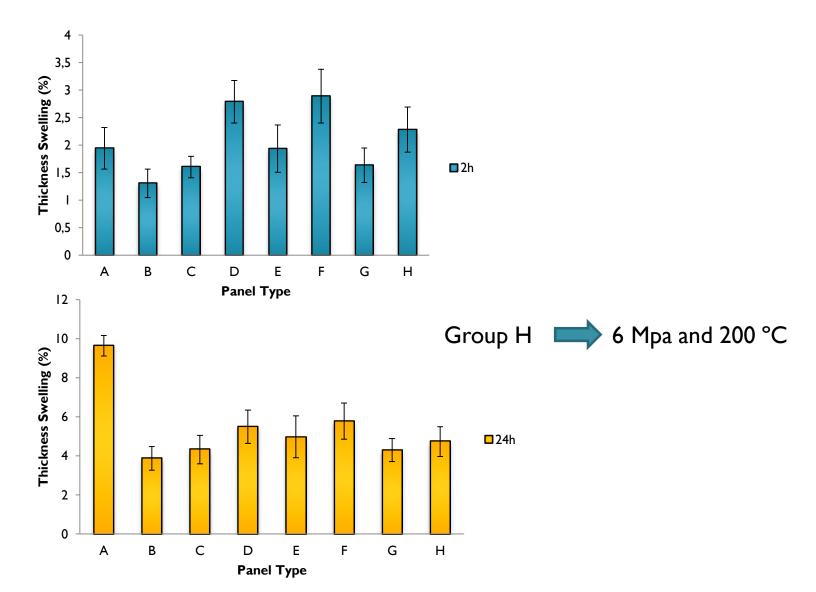

compressed at 6 MPa pressure and 200 °C temperature

compressed at 4 MPa pressure and 150 °C temperature


Flexural properties



Water absorption



□24h

Thickness swelling

CONCLUSIONS

- Sandwich panels had higher flexural properties compared to MDF panels.
- The increasing of press pressure and temperature improved flexural properties of sandwich panels.
- Sandwich panels had lower WA and TS value for 24-h immersion time.
- Compressed veneer by using different press temperature and pressure levels could be considered as an alternative way to develop sandwich type products with satisfactory structural properties.

THANK YOU for your ATTENTION !