

ADVANCES AND HANDICAPS OF USING WOOD-BASED MATERIALS IN CONSTRUCTION IN SPAIN: AN OVERVIEW

24 february 2016

Luis Vega¹ Juan Queipo de Llano² Carlos Villagrá²

² Instituto de Ciencias de la Construcción Eduardo Torroja
CSIC

¹ Ministry of Public Works and Transport

ADVANCES IN WOOD-BASED PRODUCTS

Introduction •00000

COMPETITIVENESS WITH OTHER MATERIALS

▶ Similar strength-to-weight ratio than steel.

BUILDING RENOVATION

Due to its low weight, timber is appropriate to rehabilitate and even build new flats on existing buildings

SUSTAINABILITY

A key factor in assessing sustainability of a construction material is its fitness for purpose and working life. In these aspects, wood-based materials have to make a bigger research effort.

RIGHT DESIGN

Introduction 000000

> Extend the life of wood based products by means of a right design is a fundamental aspect that is gaining importance in research fields.

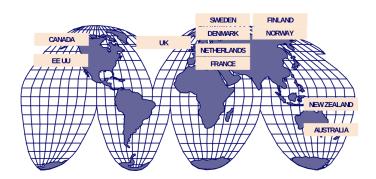
Evaluation of functional behaviour of solid wood in outdoor above ground applications

PAST AND CURRENT SITUATION IN SPAIN

- ▶ Little use of timber
- ▶ Legal/administrative obstacles (Structural safety)
- Other obstacles
- ▶ Economic crisis

Regulation framework

ACTIONS TAKEN


Spanish Technical Building Code (2006)

PERFORMANCE BASED CODE

Performance

«Objectively identifiable qualitative or quantitative characteristics of the building which help determine its aptitude to fulfil the different functions for which it was designed».

- ▶ No previous regulation in Spain
- Based on Furocode
- ▶ All kinds of timber (lumber, laminated, microlaminated, etc)

SAFETY IN CASE OF FIRE

Fire reaction requirements (euroclasses)

Situación del elemento	Revestimien	ios '''
	De techos y paredes (2) (3)	De suelos (2)
Zonas ocupables (4)	C-s2,d0	E _{FL}
Aparcamientos	A2-s1,d0	A2 _{FL} -s1
Pasillos y escaleras protegidos	B-s1,d0	C _{FL} -s1
Recintos de riesgo especial ⁽⁵⁾	B-s1,d0	B _{FL} -s1
Espacios ocultos no estancos: patinillos, falsos techos, suelos elevados, etc.	B-s3.d0	B _{FL} -\$2 ⁽⁶⁾

- (f) Siempre que superen el 5% de las superficies totales del conjunto de las paredes, del conjunto de los techos o del conjunto de los suelos del recinto considerado.
- (a) Incluye las tuberías y conductos que transcurren por las zonas que se indican sin recubrimiento resistente al fuego. Cuando se trate de tuberías con aislamiento térmico lineal, la clase de reacción al fuego será la que se indica, pero incorporando el subindice L.
- (3) Incluye a aquellos materiales que constituyan una capa contenida en el interior del techo o pared y que no esté protegida por una capa que sea El 30 como mínimo.
- (4) Incluye, tanto las de permanencia de personas, como las de circulación que no sean protegidas. Excluye el interior de viviendas. En uso Hospitalario se aplicarán las mismas condiciones que en pasillos y escaleras protegidos.
- (5) Véase el capítulo 2 de esta Sección.
- General de la parte inferior de la cavidad. Por ejemplo, en la cámara de los falsos techos se refiere al material situado en la cara superior de la membrana. En espacios con clara configuración vertical (por ejemplo, patinillos) esta condición no es apilicable.

ce a través de un vestíbulo de independencia y de dos puertas.

Fire resistance requirements

Tabla 1.2 Resistencia al fuego de las paredes, techos y puertas

Elemento	Resistencia al fuego				
			sobre rasante en edificio con altura de evacuación:		
	_	h ≤ 15 m	15 < h ≤ 28 m	h > 28 m	
Paredes y techos ⁽³⁾ que separan al sector considerado del resto del edificio, siendo su <i>uso previsto</i> : ⁽⁴⁾					
 Sector de riesgo mínimo en edifi- cio de cualquier uso 	(no se admite)	EI 120	EI 120	EI 120	
 Residencial Vivienda, Residencial Público, Docente, Administrativo 	EI 120	EI 60	EI 90	EI 120	
 Comercial, Pública Concurrencia, Hospitalario 	EI 120 ⁽⁵⁾	EI 90	EI 120	EI 180	
- Aparcamiento (6)	EI 120 (7)	EI 120	EI 120	EI 120	
Puertas de paso entre sectores de incendio			o de resistencia ai fue; i la cuarta parte cuand		

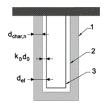


Table 3.1 Perietancia al fuego suficiente de los elementos estructurales

Tabla 3.1 Resistericia al fuego sufficiente de los	elementos e	Structure	ales	
Uso del sector de incendio considerado (1)	Plantas de sótano	Plantas sobre rasante altura de evacuación del edificio		
		<15 m	<28 m	≥28 m
Vivienda unifamiliar (2)	R 30	R 30	-	-
Residencial Vivienda, Residencial Público, Docente, Administrativo	R 120	R 60	R 90	R 120
Comercial, Pública Concurrencia, Hospitalario	R 120 (3)	R 90	R 120	R 180
Aparcamiento (edificio de uso exclusivo o situado sobre otro uso)		R 90)	
Anarcamiento (situado baio un uso distinto)		R 120	(4)	

SAFETY IN CASE OF FIRE

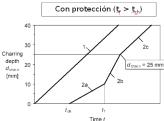
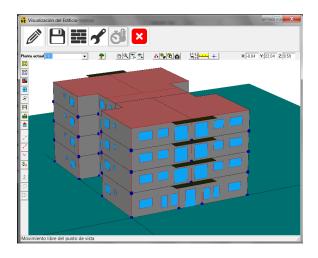


Tabla 2.1 Transmitancia térmica máxima de cerramientos y particiones interiores de la envolvente térmica U en W/m" K

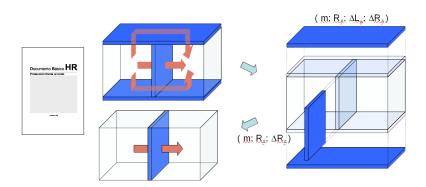
Cerramientos y particiones interiores	ZONAS A	ZONAS B	ZONAS C	ZONAS D	ZONAS E
Muros de fachada, particiones interiores en contacto con espacios no habitables, primer metro del perimetro de suelos apoyados sobre el terreno ⁽¹⁾ y primer metro de muros en contacto con el terreno	1 22	1,07	0,95	0,86	0,74
Suelos	0,69	0,68	0,65	0,64	0,62
Cubiertas	0,65	0,59	0,53	0,49	0,46
Vidrios y marcos ⁽²⁾	5,70	5,70	4,40	3,50	3,10
Medianerias	1 22	1.07	1.00	1.00	1.00

Tablas 2.2 Valores límite de los parámetros característicos medios


ZONA CLIMÁTICA A3

Transmitancia límite de muros de fachada v cerramientos en contacto con el terreno U_{Mim}: 0.94 W/m² K Transmitancia límite de suelos Uslim: 0.53 W/m2 K U_{Clim}: 0,50 W/m² K Transmitancia limite de cubiertas Fuim: 0.29 Factor solar modificado límite de lucernarios

	Transmitancia límite de huecos ⁽¹⁾ U _{Hlim} V					solar n carga ir	nodificad		de huec carga in	
% de huecos	N	E/O	s	SE/SO	E/O	S	SE/SO	E/O	S S	SE/SO
de 0 a 10	5,7	5,7	5,7	5,7	-	-	-	-	-	
de 11 a 20	4,7 (5,6)	5,7	5,7	5,7	-		-			-
de 21 a 30	4,1 (4,6)	5,5 (5,7)	5,7	5,7	-		-	0,60		-
de 31 a 40	3,8 (4,1)	5,2 (5,5)	5,7	5,7	-		-	0,48		0,51
de 41 a 50	3,5 (3,8)	5,0 (5,2)	5,7	5,7	0,57	-	0,60	0,41	0,57	0,44



ENERGY CONSERVATION (2013 DOCUMENT)

PROTECTION FROM NOISE

Simplified method

Acceptable solutions

4.2.7. Fábrica con revestimiento discontinuo, ventilada, alslamiento por el interior revestimiento exterior HP hoja principal LC 19brica de ladrillo cerámico BH tábrica de bloque de hormigón BC tábrica de bloque cerámico C comena de aire ventilada de espesor ≥3 cm v. s.10 cm con un sistema de recogida v evacuación del aque: aberturas de ventilación con un área efectiva ir 120 cm² por cada 10 m² de fachada entre forjados repartidas al fábrica de ladrillo hueco RI revestimiento interior YL placa de veso laminado E enlucido

Acceptable solutions •0000

		HS	HE ¹⁰		HR	
Código	Secoción	GI	U (W/m²K)	R _c (dBA)	R _{ev} (dBA)	m (kg/m²
F7.5	R CC CATUME	5	1/(0,578+R _{e7})			
F72	R BH CATLE E	5	1/(0.578+R _{ey})			
F7.3	R BH CATHE	5	1/(0,376+R _{e2})			
F7.4	R LC CATTL	5	1/(0.320+R _{ey})			
F 7.5	R SH CATYL	5	1/(0,320+R _{AT})			
F 7.6	R BH CATYL	5	1/(0,320+R _{A1})			

ACHADA H	ola princi	pal de fábrica con revestimie	ento discontinuo						
		RE VENTILADA							
Aislamiento p	or el inte	rior							
	R	revestimiento exterior							
	HP	hoja principal							
		LC fábrica de lad	rillo cerámico						
		BH fábrica de bloque de hormigón							
		BC fábrica de blo	que cerámico						
	C	cámara de aire ventilada							
		aberturas de ventilación o		0 cm2 por cada 10 m2	de fachada ent	re forjados n	epartidas al		
		50% entre la parte superio	or y la inferior.						
	AT	alslante	or y la inferior.						
	LH	alslante fábrica de ladrillo hueco	or y la inferior.						
		alslante fábrica de ladrillo hueco revestimiento interior							
	LH	aislante fábrica de ladrillo hueco revestimiento interior YL placa de yeso							
	LH	alslante fábrica de ladrillo hueco revestimiento interior							
	LH	aislante fábrica de ladrillo hueco revestimiento interior YL placa de yeso		HE ^(t)		HR			
Côdigo	LH	aislante fábrica de ladrillo hueco revestimiento interior YL placa de yeso	laminado	HE ⁽¹⁾ U (W/m²K)	R _A (dBA)	HR R _{Air} (dBA)	m (kg/m²)		
Côdigo	LH	aislante fábrica de ladrillo hueco revestimiento interior YL placa de yeso E enlucido	laminado HS		R _A (dBA)		m (kg/m²)		
Código	LH	aislante fábrica de ladrillo hueco revestimiento interior YL placa de yeso E enlucido Seccción	laminado HS		R _A (dBA)		m (kg/m²)		
Código	LH	aislante fábrica de ladrillo hueco revestimiento interior YL placa de yeso E enlucido Seccción	laminado HS		R _A (dBA)		m (kg/m²)		

Acceptable solutions

•0000

4.1.13 Inclinada. Ligera. No ventilada

CUBIERTA INCLINADA PANEL CON NUCLEO AISLANTE

- Teiado (Teias, pizarra y placas) panel sándwich con núcleo aislante (1) láminas metálicas
 - láminas no metálicas (paneles de madera) núcleo de lana mineral
 - núcleo de poliestireno extruído capa de impermeabilit ación
 - cámara no ventilada
 - material absorbente acústico (1)

		Panel co	n núcleo	HEW	HR	
Código	Sección	aisla p	inte	U (W/m²K)	m (kg/m²)	R, dBA
C 13.1	P8-	м	MW	1/(0,14+R _M)	15 ⁽⁴⁾ 21 ⁽⁵⁾	34 ⁽⁴⁾ 36 ⁽⁵⁾
C 13.2	T	м	MW	1/(0,16+P _{MA})	52 ⁽⁵⁾	37 ^(t)
C 13.3	T PS	NM	XPS	1/(0,16+R _M)	54	40 ⁽⁴⁾
C13.4	PS C -	м	MW	1/(0,38+R _{AA} , R _{NB})	63	51 ⁽⁰⁾

3.3 Maderas

3.3.1. Maderas

Maderas							
		HE					
Material	ρ ⁽¹⁾ kg / m ³	λ W/m⋅K	c _p J/kg⋅K	μ			
Frondosa							
Frondosa, muy pesada	ρ >870	0,29	1600	50			
Frondosa, pesada	750 <p td="" ≤870<=""><td>0,23</td><td>1600</td><td>50</td></p>	0,23	1600	50			
Frondosa, de peso medio	565 <p td="" ≤750<=""><td>0.18</td><td>1600</td><td>50</td></p>	0.18	1600	50			
Frondosa, ligera	435 <p td="" ≤565<=""><td>0.15</td><td>1600</td><td>50</td></p>	0.15	1600	50			
Frondosa, muy ligera	200<ρ ≤435	0,13	1600	50			
Conífera							
Conifera, muy pesada	p >610	0.23	1600	20			
Conifera, pesada	520<ρ ≤610	0,18	1600	20			
Conifera, de peso medio	435<ρ ≤520	0.15	1600	20			
Conifera, ligera	ρ ≤435	0,13	1600	20			
Balsa	ρ ≤200	0.057	1600	20			

(1) Normalmente, el valor de densidad de la madera y de los productos de madera viene dado a una temperatura de 20°C y con una humedad relativa del 65%, no es por tanto la densidad seca.

3.16 Marcos

Marcos						
	HE					
Producto	ρ kg / m³	U _{H,m} (W/m2·K) vertical	U _{H,m} (W/m ² ·K) horizontal			
Metálico Normal Con rotura de puente térmico entre 4 y 12 mm Con rotura de puente térmico > 12 mm	:	5,7 4 3,2	7,2 4,5 3,5			
Madera Madera de densidad media alta Madera de densidad media baja	700 500	2,2 2	2,4 2,1			
PVC PVC (dos cámaras) PVC (tres cámaras)	-	2,2 1,8	2,4 1,9			

Acabados de interiores paredes, techos y suelos					
			HR		
Tipo		α			
	500 Hz	1000 Hz	2000 Hz	$\alpha_{\rm m}$	
Hormigón visto	0,03	0,04	0,04	0,04	
Hormigón pintado	0,06	0,07	0,09	0,07	
Bloque de hormigón visto	0,05	0,08	0,14	0,09	
Bloque de hormigón pintado	0,08	0,09	0,10	0,09	
Ladrillo cerámico vistos	0,03	0,04	0,05	0,04	
Ladrillo cerámico pintados	0,02	0,02	0,02	0,02	
Enfoscado de mortero	0,06	0,08	0,04	0,06	
Enlucido de yeso	0,01	0,010	0,02	0,01	
Placa de yeso laminado	0,05	0,09	0,07	0,06	
Placas de escayola	0,04	0,05	0,05	0,05	
Piedra	0,01	0,02	0,02	0,02	
Madera y paneles de madera	0,08	0,08	0,08	0,08	
Parquet	0,04	0,05	0,05	0,05	
Tarima	0,08	0,09	0,10	0,09	
Tarima sobre rastreles	0,06	0,05	0,05	0,05	

0,08

0,19

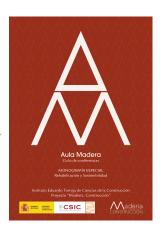
0,21

0,06

Acceptable solutions 0000

Corcho

OTHER ACTIONS


Guides

- ▶ Aimed for non-specialist architects
- ▶ To give help in the design and construction process
- ▶ Topics:
 - ▶ Basic concepts of timber construction
 - ▶ Wood products for construction
 - ▶ Behaviour in case of fire
 - ▶ Construction control and maintenance
 - ▶ Unions

OTHER ACTIONS

Aulamadera

- ▶ Formative action
- ▶ 6 sessions in 2010 in Madrid
- ▶ Then all over Spain (Bilbao, Valladolid, Santiago, Pamplona, etc.)

OTHER ACTIONS

Studies of timber components protection from noise performances

- Many tests in new and existing timber buildings
- ▷ Objectives
 - ▶ Define solutions for existing buildings
 - ▶ Define robust solutions for new buildings
 - Develop a simplified method for timber

THE FUTURE

- Despite the crisis, the actions have been effective
- ▶ Continue the current actions and
- ▶ Next actions should address.
 - ▶ Education in schools of architecture
 - ▶ Improving knowledge of the Public Administration

Thank you for your attention