

Performance of thermally modified timber in use class 3.2

Dipl.-Ing. (BA) Philipp Flade

Institut für Holztechnologie Dresden gemeinnützige GmbH (IHD)

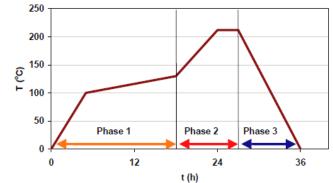
philipp.flade@ihd-dresden.de

1st COST FP1303 Conference 23.-24.10.2014

Thermally modified timber / TMT

Thermal modification:

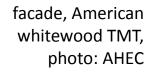
- treatment at temperatures of 160-230°
- partial pyrolysis at reduced oxygen concentration
- chemical composition changes (hemicelluloses degraded)


Result of modification:

- properties permanently changed across entire thickness:
 - increased resistance against wood-destructive fungi
 - improved dimensional stability
 - lower equilibrium moisture
 - darker color shades

but also:

- decreasing stability


schematic diagram of Thermowood propcess; source: Thermowood

Applications of TMT

- used for outside purposes:
 - non load-bearing components
 - floorings, windows, doors, facade claddings, deckings

deckings:

- high exposure, in horizontal direction
- situation of exposure \triangleq **U.C. 3.2** (EN 335):
 - not covered
 - continually exposed to weather, frequent wetting
- additionally mechanically stressed (abrasion, bending)
- DIN 68800-1*: durability class 2 ... 3 sufficient (non load-bearing components)
- *) German standard for Wood preservation, part 1: General

decking, aspen TMT, photo: Hagensieker

• Theory:

- reduced swelling / shrinking \rightarrow reduced crack formation?
- But: repeatedly cases of damage with strong crack formation
 - in service (weathering) or
 - directly after heat treatment,
 - various wood species (spruce, beech, ash, ...),

Consequences of heavy crack formation

- aesthetic worsening
- hazard of injury (splinters)
- weakening of material
- deposition of dust
- moisture pockets

Ioss of value

- longer wetting + higher risk of fungal decay

- ightarrow complaints and adjunct costs
- \rightarrow loss of positive image

defective decking board, ash TMT, photo: anonym

5

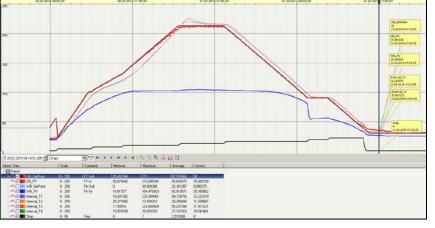
Objectives

- minimise crack formation (quality assurance)
- avoid complaints \rightarrow improve attractivity of TMT

Approach + method

(1) Analysis of cases of damage

- clarify reasons + mechanisms
- trace back the material (chain of custody)
- investigate development of defects
- systematise the defects (type, dimension)


(2) Production of TMT

before: characterise raw timber

- experimental (IHD) + industrial (partners)
- variation of:
 - wood species, cut direction, characteristics
 - intensity treatment
- analysis of internal tensions

experimental thermo kiln of IHD

graph of heat treatment process

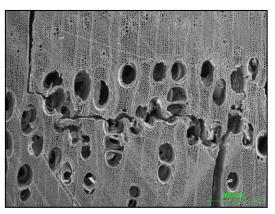
assessment of case-hardening, spruce TMT

(3) Weathering + assessment

- exposure: use class 3.2
 - orientated to south
- artificial + natural weathering
- monitoring of crack formation

subsequently:

- assessment of cracks, classification
- comparison (sorting, intensity of treatment)


outdoor test field of IHD

(4) Analysis of TMT microstructure

- microscopy: structural changes
- reflected-light, transmitted-light, SEM

ash TMT, SEM-photo; photo: Bäucker, TU Dresden

ash TMT, cross section, M 5:1

Deduction of measures

- requirements on quality of raw timber (wood selection, sorting, drying quality)
- parameters for appropriate thermal processing (high temperature, cooling rate)

reduction of crack formation

Typical phenomena of cracks in TMT

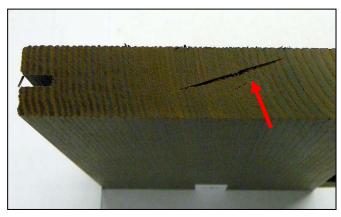
 tangential delaminations: conifers, plain sawn boards, on inside face

spruce TMT, cross section

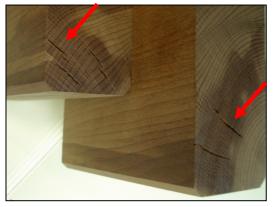
tangential delaminations, facade cladding, spruce TMT,

• deep radial surface cracks: esp. beech

beech TMT, cross section



decking board, beech TMT, cross section



Typical phenomena of cracks in TMT

- long, traversing end cracks
 decking board, beech TMT
- internal cracks (radial): heavy deciduous wood esp. susceptible (ash, beech), but also conifers

decking board, ash TMT

Typical phenomena of cracks in TMT

tangential cracks in ash TMT

decking board, ash TMT, photo: anonymous


beech TMT

Philipp Flade

conifers: tangential cracks (different densities earlywood-latewood)

beech: relatively high swelling/shrinking values \rightarrow broad cracks

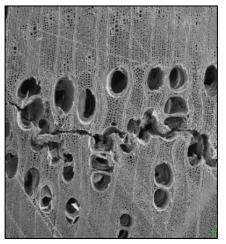
poplar (diffuse-porous, relatively low density): only little crack formation

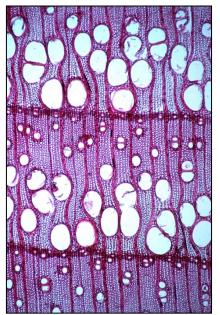
Influences: wood species (ash)

Favourable characteristics for TMT

- high density
- high strength level
- also after modification
 - → deckings
- nice texture: stripe grain
- brown heart: similar strength properties
- easily available

 durability class 5 (EN 350-2) → high grade of improvement by modification


Influences: wood species (ash)



Rather adverse characteristics for TMT

- ring-porous → inhomogeneous structure:
 - high differences in densities earlywood-latewood
 - large early-wood vessels → possibly predetermined breaking points
- wide annual rings (> 5 mm) → very hard
- strongly alternating ring width

tends more to tangential cracks (mostly within early wood)

ash, cross section, transmitted-light; photo: Weiß

ash TMT, cross section, SEM, photo: Bäucker, TU Dresden

→ **timber selection**: soft ash + homogeneous ring width preverable

1st COST FP1303 Conference 23.-24.10.2014

Philipp Flade

spruce TMT, high amount

of compression wood

generally: poor wood quality not compensable by modification

- not suitable: red heart in beech, large knots, strong slope of grain, strongly alternating annual ring widths
- no influence: brown heart (ash)

Influences: sorting

compression wood (spruce): no negative influence, even less crack formation

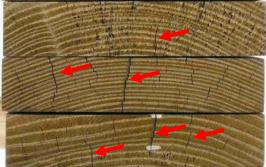
spruce TMT, hardly compression wood

of grain, ash TMT, photo: anonym

Influences: sorting

annual ring arrangement (example: spruce TMT)

standing rings:



more tangential, hardly radial cracks visible diagonal rings:

few radial, hardly tangential cracks visible

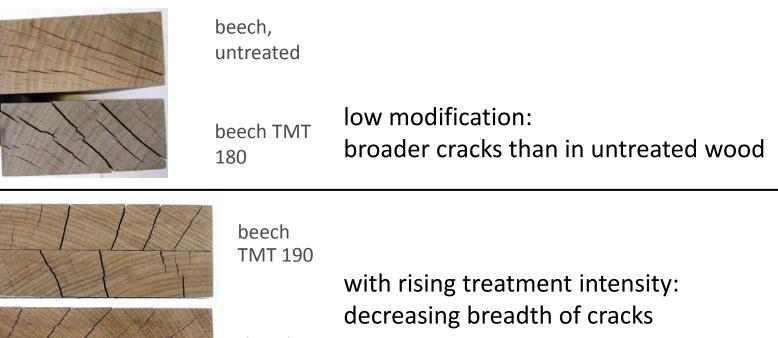
more radial, hardly tangential cracks visible

more radial surface cracks

spruce TMT, lying rings

spruce TMT, standing rings

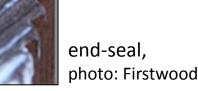
Influences: pre-drying

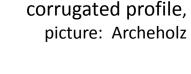

 drying defects (tensions, cracks) more visible after modification (cracks enlarged)

internal cracks, pine TMT; photo: anonym

• varying crack formation depending on treatment intensity:

beech TMT 200


 but: too heavy thermal treatment → loss of stability; strong embrittling + increasing risk of delaminations


Influences: processing, mounting, maintenance

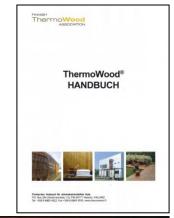
additional stress because of unsuitable wood processing/mounting facilitate the crack formation:

- corrugated profile \rightarrow facilitates delamination
- wide boards screwed through
 - \rightarrow movement of wood hindered \rightarrow splitting
- gap width too small \rightarrow swelling \rightarrow bulging
- no protection of cross-cut end \rightarrow more end cracking
- no water-repellents (pigmented oil) + maintenance \rightarrow more surface cracking

decking, cracks around the screws, photo: anonym

Philipp Flade

Summary



- TMT: generally suitable for non load-bearing outdoor applications
- durability mostly sufficient (UC 1 ... 3)
- predominantly good TMT performance, but
- frequent cases with checking after short weathering period (despite of reduced hygroscopicity + improved dimensional stability)
- different **influence factors** on crack formation:
 - wood selection: wood species, vessel distrubution, ...
 - sorting: annual-ring arrangement, ring width (e.g. soft ash), slope of grain, knots, ...
 - pre-drying: defects
 - thermal modification: intensity
 - wood processing + mounting: not adapted on characteristics of TMT

Further information about TMT

- Thermowood-handbook (www.thermowood.fi)
- IHD-fact sheets (www.tmt.ihd-dresden.de)
 - 1 Definition of terms
 - 2 Durability
 - 3 Load-bearing purposes
 - 4 Colour shading stability
 - 5 Standardisation, quality assurance
 - 6 Methods for manufacture
 - 7 Fire behaviour
 - 8 Disposal
 - 9 Beech TMT
 - 10 Windows
 - 11 Coating
 - 12 Decking boards (in progress)

Thank you for your attention.