# Investigation on bonding properties of modified birch veneers using ABES machine

Alireza Bastani Prof. Dr. Holger Militz Anti Rohumaa

Department of Wood Biology and Wood Products Georg-August-University Göttingen/Germany





#### **Short Term Scientific Mission**

#### **Host:**

Department of Forest Products Technology Aalto University School of Chemical Technology Helsinki, Finland

Date of the mission: May 2014











# **Glued wood products**























## **Modified Wood**

- -Biological durability
- -Dimensional stability
- -Hardness
- -Weathering resistance of wood

















### Wood after modification

Changes in <u>chemical</u>, <u>physical</u> and <u>structural</u> properties



(e.g. less polarity, less porosity...)



Change the strength of adhesive





## Aim of research

## Investigation on:

- 1. Bonding properties of modified birch veneers glued with hot curing PF adhesive using automated bond evaluation system (ABES).
- 2. Feasibility of using ABES for evaluation of bonding characteristics of coldest adhesives (PVAc, EPI and PU1k)





## Experimental-wood material/modifications

 Heat treated birch veneers (180 and 220 °C)

 Melamine treated birch veneers (20% conc)

Furfurylated birch veneers (FA 70%)







#### Thermal treatment of Birch veneers



#### 180 C°

| Step | Temperature | Moisture level in oven | Time  |
|------|-------------|------------------------|-------|
| 1    | 80 C°       |                        | 1/2 h |
| 2    | 80 C°       | • • •                  | 1/2 h |
| 3    | 120 C°      |                        | 1 h   |
| 4    | 150 C°      |                        | 1 h   |
| 5    | 180 C°      | • • • • • • •          | 3 h   |
| 6    | 150C°       |                        | 1 h   |
| 7    | 120 C°      |                        | 1 h   |
| 8    | 80 C°       | • • •                  | 1/2 h |
| 9    | 80 C°       |                        | 1/2 h |

#### 220 C°

| Step | Temperature | Moisture level in oven | Time |
|------|-------------|------------------------|------|
| 1    | 80 C°       | • • •                  | 1 h  |
| 2    | 120 C°      | • • • • •              | 1 h  |
| 3    | 150 C°      |                        | 1 h  |
| 4    | 180 C°      | • • • • • • •          | 1 h  |
| 5    | 200 C°      |                        | 1 h  |
| 6    | 220 C°      | • • • • • • •          | 3 h  |
| 7    | 180 C°      |                        | 1 h  |
| 8    | 120 C°      |                        | 1 h  |
| 9    | 80 C°       | • • •                  | 1 h  |





#### **Melamine treatment**

#### Impregnation with 20% NMM

Vacuum (30min/60 mbar)



Soaking veneers in solution (2h)



1day - leaving out of solution (drying at room temp)



Drying / curing 40C° (18h) 60C° (6h) 120C° (3h)





### Furfurylation (Keboney)

Treatment solution: FA 70%



Vacuum (30min)



Pressure (30min/7.6 bar)



Curing temperature/time: 110°C/over a night





# **Experimental**-adhesive

|                                     |            | Adhe    | esive  |        |  |
|-------------------------------------|------------|---------|--------|--------|--|
| Property                            | Hot curing | coldset |        |        |  |
|                                     | PF         | EPI     | PU     | PVAc   |  |
| Solids, %                           | 49         | 60      | 99     | 49     |  |
| Brookfield viscosity<br>(20°C), MPa | 300        | 9,400*  | 10,500 | 5,000* |  |
| Density, g/cm <sup>3</sup>          | -          | 1.50    | 1.15   | 1.04   |  |
| рН                                  | 12         | 7.0     | -      | 5.2    |  |





# **Experimental**-Method



sample cutter - for cutting 20 mm x 115 mm strips



**ABES** 





# **Experimental**-Testing parameters

|                            | Hot curing glue [PF] | Cold set glues |
|----------------------------|----------------------|----------------|
| Measured value[MPa]        | shear strength       | shear strength |
| Applied pressure [N/mm²]   | 2                    | 2              |
| Application amount of glue | 100                  | 200            |
| [g/m²]                     |                      |                |
| curing temperature [°C]    | 130                  | 20             |
| Bond area [mm²]            | 4 x 20               | 4 x 20         |
| Pressing time [S]          | 20, 160              | 20, 90, 300    |
| Assembly time [S]          | 20, 600 [=10m]       | 20             |





## **Results-PF**













## Results-PU





3-4h pressing time

"not recommended for studying with ABES"







## Results-Coldset glues (PVAc and EPI)

**Shear strength (ST)** for control, melamine treated (M20), furfurylated (F) and heat treated samples at 180°C (HT180) and 220°C (HT220) samples glued with **PVAc**.

| Press time (S) |          | control | M20  | F    | HT220 | HT180 |
|----------------|----------|---------|------|------|-------|-------|
| 20             | ST (MPa) | 0.92    | 0.09 | 0.08 | 0.57  | 0.85  |
|                | SD       | 0.21    | 0.01 | 0.01 | 0.24  | 0.14  |
| 90             | ST (MPa) | 2.76    | 0.44 | 0.37 | 1.31  | 2.67  |
|                | SD       | 0.24    | 0.19 | 0.11 | 0.22  | 0.07  |
| 300            | ST (MPa) | 5.93    | 0.77 | 1.66 | 1.91  | 4.55  |
|                | SD       | 0.17    | 0.35 | 0.15 | 0.33  | 0.31  |





#### Conclusion

ABES, a suitable device to study bonding properties of modified veneers

#### PF

- Increasing assembly time had no effect on bonding after short pressing time
- Increasing pressing time was more effective on bonding of furfurylated & melamine treated veneers in both assembly times
- Under long press time (even by short assembly), furfurylated veneers showed an acceptable bonding strength

#### Coldset glues

Among coldset adhesives, PVAc is recommended for study with ABES





#### Thanks:

- COST Action FP1303 for supporting this STSM
- Aalto University for providing the opportunity of working with ABES
- Dr. Erik Larnøy & Eva Grodås for furfurylation of veneers

# Thank you for your attention!



