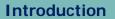


Time of Wetness (ToW) simulation based on testing moisture dynamics of wood

Joris Van Acker Imke De Windt Wanzhao Li Jan Van den Bulcke

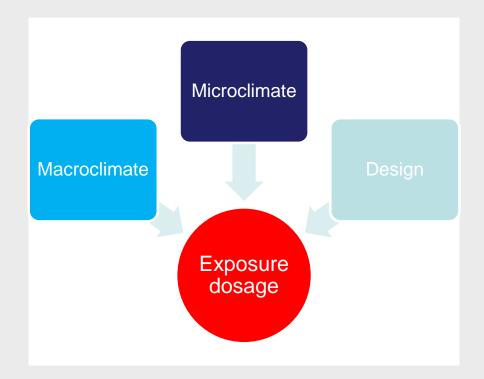
UNIVERSITEIT

INTRODUCTION


Moisture and Rot

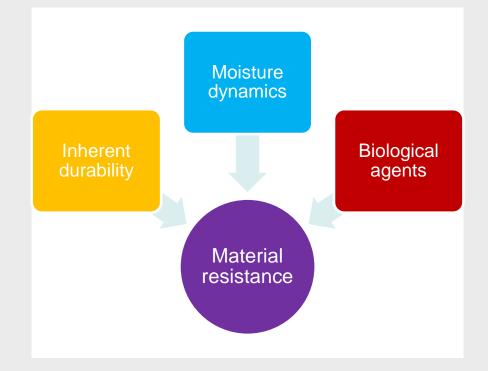
-> Service life

-> Moisture dynamics

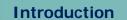


Performance standards for wood in construction - delivering customer service life needs

Exposure dosage



PerformWOOD


Performance standards for wood in construction - delivering customer service life needs

Material <u>resistance</u>

Material resistance

Biological point of view – fungal resistance

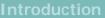
- 1) Organism related testing (optimal MC) →intrinsic nutritional quality / toxicity
- 2) Moisture related testing (wetting ability drying rate)
 → moisture behaviour / dynamics linked to ToW

EXPERIMENTAL

Floating test

Submersion test

[Not water vapour sorption]

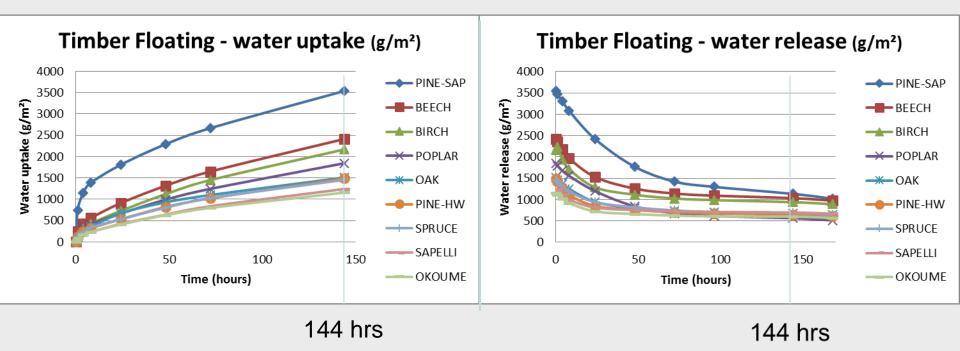

Floating test

Conclusion

Submersion test

RESULTS AND DISCUSSION

Wetting - drying


ToW concept

Water uptake – release / absorption - desorption

UGent

Classification of abs. and des. in groupings

Class Floating test (g/m ²)		Submersion test (kg/m ³)			
upper limit	Absorption	Desorption	Absorption	Desorption	
1	750	250	90	15	
2	950	400	110	20	
3	1150	500	130	25	
4	1350	600	150	30	
5	1750	750	170	40	
6	2750	1000	210	55	
7	5000	2000	250	70	
8	∞	8	8	8	

Classification parameters from fitted curves

Absorption

$$f(x) = a * x^b$$

a: steepness of linear area

absorption coefficient

b: close to 0.5, if not...

special phenomena,
capillary uptake...

Results & Discussion

Desorption

$$f(x) = a + b * e^{\left(-\frac{x}{c}\right)}$$

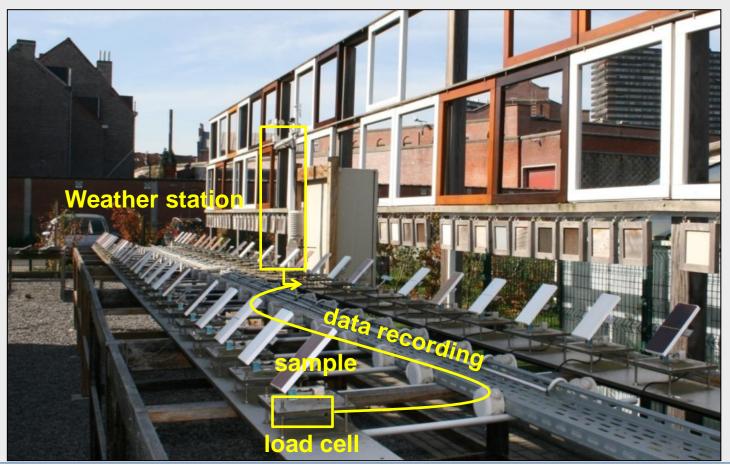
a: the asymptotic value after drying

- **b:** the amount that is released
- **c:** low c-values correspond with fast drying

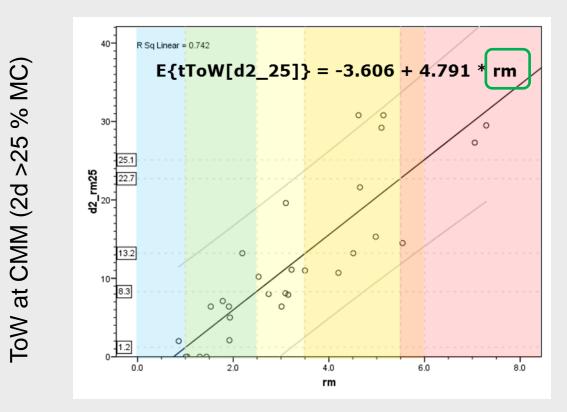
	Wood spe	ecies	Class	Clas
			F/A	F/1
			2	

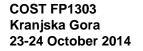
Wood species	Class	Class	Class	Class
	F/A	F/D	S/A	S/D
DOUGLAS FIR	3	4	3	5
LARCH	5	5	6	6
MAR PINE	7	7	7	7
PINE-HW	4	4	5	5
PINE-HW 2	5	5		
PINE-SAP	7	7	7	6
PINE-SAP 2	7	7		
PINE-SAP 3	7	6		
RAD PINE	8	8	6	6
SIB LARCH	4	5	4	5
SIB LARCH 2	5	5	5	6
SIB LARCH 3	5	6	6	7
SPRUCE	5	5	5	5
SPRUCE 2	5	5		
W RED CEDAR	4	3	4	1

Wood species	Class	Class	Class	Class
	F/A	F/D	S/A	S/D
ALDER	6	6	7	5
ASH	4	4	5	6
BEECH	6	7	8	8
BEECH 2	6	7		
BEECH 3	6	7		
BIRCH	6	6		
BIRCH 2	6	6	7	8
BLACK LOCUST	2	4	1	3
BLUE GUM	3	2	4	5
CHERRY	5	4	7	6
CHESTNUT	5	4	4	3
MAPLE	7	7	8	5
ОАК	5	5	5	5
OAK 2	5	5		
ОАК З	5	5		
POPLAR	6	4	8	6
POPLAR 2	6	4		


EXPERIMENTAL

CMM


Continuous Moisture Measurements - CMM



UNIVERSITEIT GENT

Results from PLYWOODMOISTURE project

Residual moisture after floating test

Results from PLYWOODMOISTURE project

First CMM results expected in second half next year

UGent WOODLAB

GFNT

ntroduction

Modelling?

Water (not water vapour!) absorption:

Important yet difficult to model in building physics (HAM):

- what kind of equations to use?
- influence of driving rain (pressure effect)
- determination of (changing) absorption coefficients / diffusivities
- redistribution of water

-> 1st & 2nd law of Fick -> not applicable > FSP

Modelling?

Theory – fitting 1D:

• Experimental equations such as Peleg and others?

$$M_t - M_0 = \frac{t}{K_1 + K_2 t}$$

$$M_t - M_0 = M_{ret} \left(1 - e^{\frac{-t}{T_{ret}}} \right) + K_{rel}t$$

Modelling?

Theory – fitting 1D:

• Hagen-Poiseuille law for absorption in capillaries?

$$M^{2} = \xi \frac{\rho^{2} A^{2} \phi^{2} (S_{wf} - S_{wi})^{2} r_{ae} \sigma cos\theta}{2\mu} t$$

Modelling?

Theory – 3D fitting:

• Conservation of mass with a Fickian like partial differential equation?

$$\frac{\delta W}{\delta t} + \nabla (-D.\nabla W) = 0$$

with
$$D = \frac{\pi}{4} \left(\frac{A}{w_c}\right)^2$$
, $A = \frac{m}{\sqrt{t}}$

[Candanedo & Derome 2005]

Modelling?

Theory – 3D fitting:

- Percolation model of Perré for simulation water migration in wood?
- -> TransPore model coupling heat and mass

Modelling?

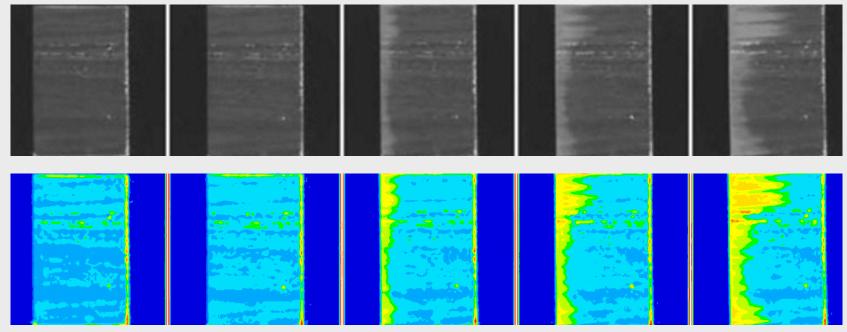
Experimental:

- Diffusivities change depending on the moisture content

 -> Calculation of redistribution using X-ray CT / neutron tomography
- 2. Diffusivities depend on the anatomy

Modelling?

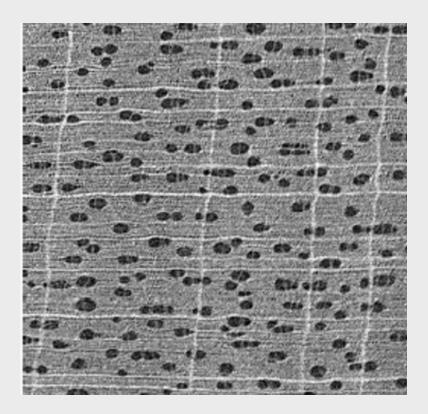
Input:


- Determine absorption coefficients based on the moisture front
- Characterize diffusivities taking into account anatomical parameters
- Determine redistribution of water
- Deviations from average behaviour

Modelling?

Input: solid wood (X-ray CT)

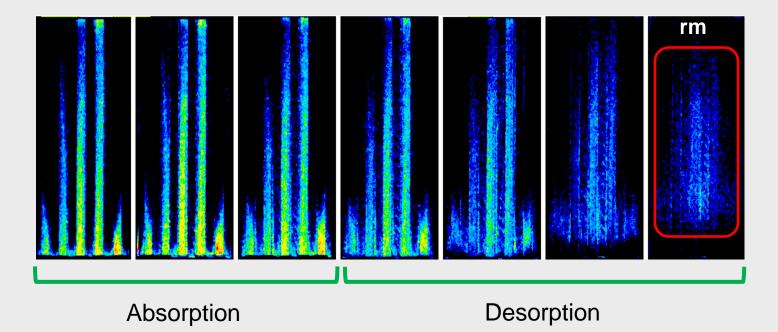
[Li et al. 2013]



Experimental

Modelling?

Input:


[Li et al. 2014]

Modelling?

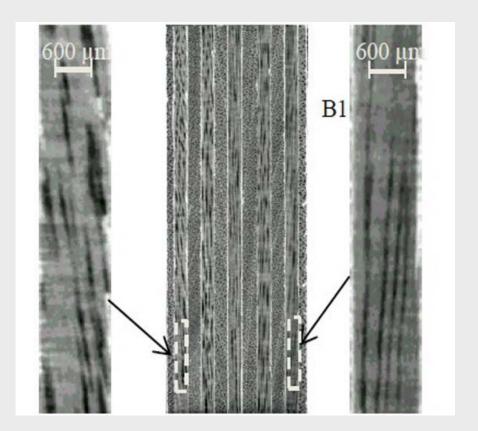
Input: plywood (neutron radiography)



[Li et al. 2014]

Results from PLYWOODMOISTURE project

Residual moisture after floating test



Experimental

Conclusion

Modelling?

Input:

[Li et al. 2014]

CONCLUSION

- Work to do in collaboration building & drying physicists
- Preservative treated wood?
- Collaboration outreach

UNIVERSITEIT GENT

> UGent WOODLAB

THANK YOU

Joris.VanAcker@UGent.be Imke.DeWindt@UGent.be Wanzhao.Li@UGent.be Jan.VandenBulcke@UGent.be

© All pictures are property of UGent - WOODLAB (or mentioned otherwise). It is not allowed to use them without permission.

