BC

Energy monitoring at the BioComposites Centre

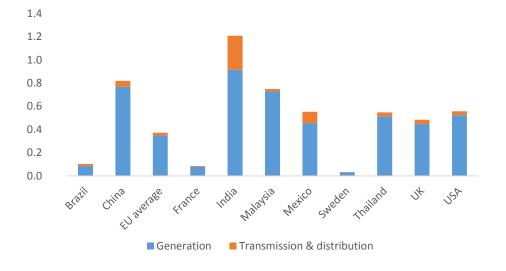
C. Skinner

Life Cycle Assessment Analyst 3rd December 2015

Background on Centre

- Focused on applied research related to bio-materials and bio-based economy
- Established for 25 years
- Funding from competitive bids and commercial
- Low impact materials, bio-refining, green chemistry

LCA


- SimaPro / Ecoinvent
- Bio-resins, bio-preservatives, composites
- Limited data for additives / novel materials
- Specialist chemicals
- Novel / emerging processing techniques

Process energy across different national grids

GHGs associated with consumption of 1 kWh grid electricity, by country (2013)

From: DEFRA Greenhouse Gas Conversion Factor Repository (2013)

Biorefining Technology Transfer Centre

Fractionation line

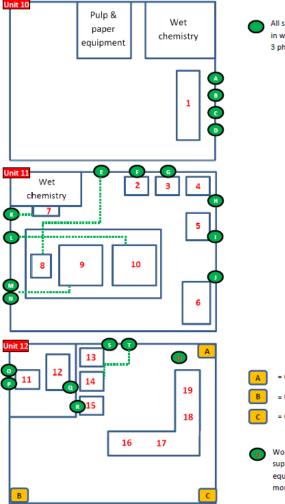
Twin screw extrusion line

Pulp moulder

Wet chemistry

Biorefining Technology Transfer Centre

Energy monitoring equipment hard-wired to all pilot-scale machinery



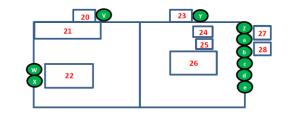
Energy Usage Monitor

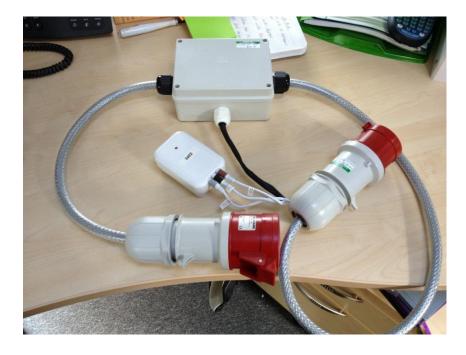
Add chart windows to query the data collected from the power transmitters in your home. Adding several charts at the same time allows you to compare consumption from different devices, date ranges and tariffs. The maximum number of charts that can be opened is ten, with four of these charts being displayed on screen at one time.

Hiskory usage (02/11/2015 12:00 - 02/11/2015 12:59)

Pilot plant e-monitoring floor plan

All supplies (excl. those in wet chemistry lab) are 3 phase



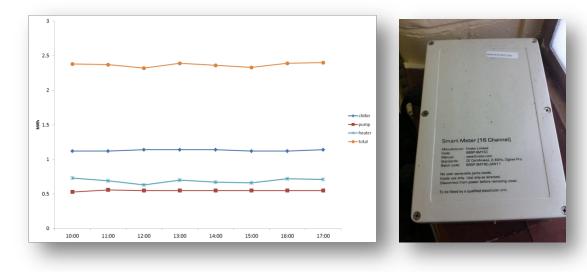

= Generator supply in

Work planned to upgrade supply to refining equipment - includes built-in monitoring capability.

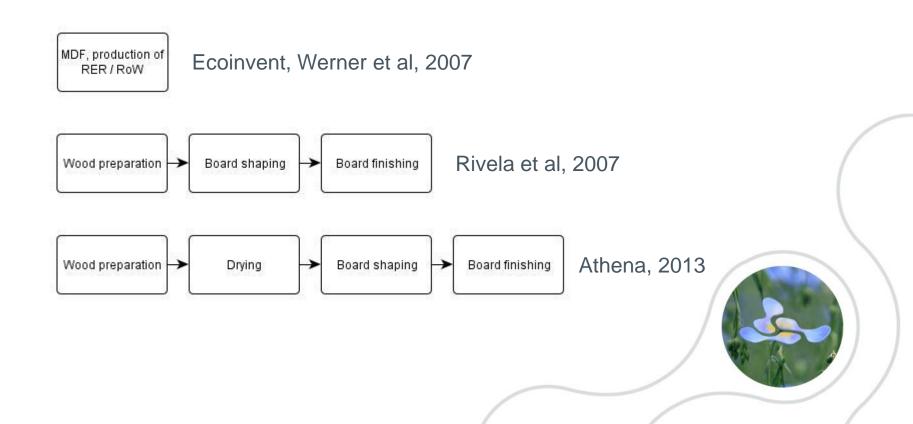
Wet Chemistry

Single and 3 Phase portable electrical connectors with transmitters

Other solutions

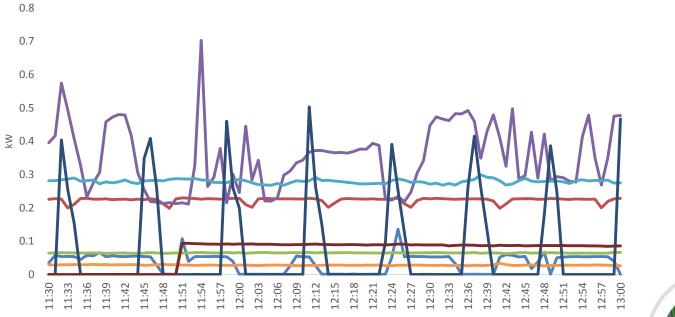

1- Plug-in monitors:

- 2- Enistic Energy Management Service \rightarrow
 - clamps, sensors, smart box and controller
 - accessed online


Built-in software (Separex)

PROCESS CONTROL					PARAMETERS FILE:				
REGULATION	CONTROL	MEASURE	SET POINT	PROP	INT (ms)	DERIV (ms)	ENERGY METER (KWH)		
HE3000			50° 10	0.0	1 P	1	HEATER	172.28	
A40	0		SP #	144		1	CHILLER	126.22	25.22
A41	0		SP ==	140	1) - Z	5	P200	8.12	RESE
HE5000 / \$50	a		<u></u> γρ. α.	10			P210	252	
HE5100 / \$51	0		50° et -	00			TOTAL ENERG	Y 309-78	
REGULATION									
REGULA	TION	CONTROL	MEASURE	SET POINT	PROP	INT (ms)	ERIV (ms) PEN	TE MIN	мах
REGULA	TION	CONTROL	MEASURE	SET POINT	PROP	INT (ms)	ERIV (ms) PEN	TE MIN	мах
	TION	CONTROL	MEASURE	SET POINT	PROP	INT (ms)	ERIV (ms) PEN	TE MIN	MAX
FLOW P200	TION	CONTROL 800 1000	MEASURE ROO O SE	90 TO	PROP	INT (ms) D	ERIV (ms) PEN	TE MIN	MAX

Example: pressurised refining


Example: pressurised refining

- Which are the key elements within the refining process?
- How does varying refining conditions affect energy consumption and yield?
- What is the collective effect of ancillary machinery?
- Energy across different feedstocks?

Energy flow visible / analysable at greater granularity:

Next steps / challenges

- Other energy natural gas metering
- Scale-up
- Industrial partnering, following feasibility demonstration
- Novel / rare materials, chemicals

References

- Athena (2013) A cradle-to-gate life cycle assessment of Canadian medium density fibreboard (MDF), 2013 update. Athena Sustainable Materials Institute, Ottawa, Canada
- DEFRA (2015) Greenhouse gas conversion factor repository. http://www.ukconversionfactorscarbonsmart.co.uk/ Accessed 10/11/15
- Rivela B, Moreira MT, Feijoo G (2007) Life Cycle Inventory of Medium Density Fibreboard Int J Life Cycle Assess 12(3):143-150
- Werner F, Althaus H-J, Künniger T, Richter K (2007) Life cycle inventories of wood as fuel and construction material. Ecoinvent report no. 9. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland

BC BC

Thank you