New insight regarding mode of action of brown rot decay of modified wood based on DNA and gene expression studies

Alfredsen, Ringman, Pilgård & Fossdal, ECWM7, Lisbon March 1012, 2014

Aim

 review the work performed regarding DNA quantification and gene expression studies of brown rot decay related to modified wood

Method development

Holzforschung, Vol. 59, pp. 568–573, 2005 • Copyright © by Walter de Gruyter • Berlin • New York. DOI 10.1515/HF.2005.093

Comparison of quantitative real-time PCR, chitin and ergosterol assays for monitoring colonization of *Trametes versicolor* in birch wood

Morten Eikenes*, Ari M. Hietala, Gry Alfredsen, Carl Gunnar Fossdal and Halvor Solheim Holzforschung, Vol. 65, pp. 889-895, 2011 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/HF.2011.079

qPCR as a tool to study basidiomycete colonization in wooden field stakes

Annica Pilgård^{1,*}, Gry Alfredsen², Charlotte G. Björdal³, Carl Gunnar Fossdal² and Isabella Børja²

	DE	GRUYTER	
--	----	---------	--

DOI 10.1515/hf-2012-0157 ----- Holzforschung 2014; 68(1): 123–131

Ari M. Hietala*, Emil Stefańczyk, Nina Elisabeth Nagy, Carl Gunnar Fossdal and Gry Alfredsen Influence of wood durability on the suppressive effect of increased temperature on wood decay by the brown-rot fungus *Postia placenta*

Fungal DNA and gene expression studies

Postia placenta gene expression during growth in furfurylated wood Alfredsen and Fossdal (2010), IRG/WP 10-10734

✓ Genes involved in oxidative degradation: furfurylated ≥ untreated

✓ Genes involved in enzymatic degradation: furfurylated ≤ untreated

✓ Wood moisture content : Pine > FA

Molecular investigation of *Postia placenta* growing in modified wood Schmöllerl *et al.* (2011), IRG/WP 11-10756

 $\checkmark\,$ DNA and gene expression measured even when no mass loss

- ✓ Genes involved in oxidative degradation: modified \geq untreated
- ✓ Wood moisture content : Pine > modified wood

Moisture

Effect of wood modification on gene expression during incipient *Postia placenta* decay

Ringman *et al.* (2014) Int. Biodeterior. Biodegrad (in press)

- \checkmark Gene expression measured even when no mass loss
- ✓ Genes involved in oxidative degradation: modified ≥ untreated
- ✓ Genes involved in enzymatic degradation: modified ≤ untreated

skogoglandskap.no

The effects of acetylation level on the growth of *Postia placenta* over 36 weeks Pilgård *et al.* (2012), IRG/WP 12-40589

- $\checkmark\,$ DNA and gene expression measured even when no mass loss
- ✓ Genes involved in oxidative degradation: acetylated \geq untreated
- ✓ Wood moisture content : Pine > acetylated

Postia placenta decay of acetic anhydride modified wood – effect of leaching

Alfredsen and Pilgård (2014), Wood Material Science & Engineering, in press

- $\checkmark\,$ DNA and gene expression measured even when no mass loss
- ✓ Genes involved in oxidative degradation: acetylated ≥ untreated
- ✓ Wood moisture content : Pine > acetylated wood
- The high acetylation level expressed higher levels of genes involved in oxidative degradation at week 28 compared to untreated wood at 4 weeks even if no mass loss was detected.

Conclusion

skog + landskap

Knowledge for environment and innovation

skogoglandskap.no